OBJECTIVE: Beta cells of pancreatic islets are susceptible to functional deficits and damage by hypoxia. Here we aimed to characterize such effects and to test for and pharmacological means to alleviate a negative impact of hypoxia. METHODS AND DESIGN: Rat and human pancreatic islets were subjected to 5.5 h of hypoxia after which functional and viability parameters were measured subsequent to the hypoxic period and/or following a 22 h re-oxygenation period. Preconditioning with diazoxide or other agents was usually done during a 22 h period prior to hypoxia. RESULTS: Insulin contents decreased by 23% after 5.5 h of hypoxia and by 61% after a re-oxygenation period. Preconditioning with diazoxide time-dependently alleviated these hypoxia effects in rat and human islets. Hypoxia reduced proinsulin biosynthesis ((3)H-leucine incorporation into proinsulin) by 35%. Preconditioning counteracted this decrease by 91%. Preconditioning reduced hypoxia-induced necrosis by 40%, attenuated lowering of proteins of mitochondrial complexes I-IV and enhanced stimulation of HIF-1-alpha and phosphorylated AMPK proteins. Preconditioning by diazoxide was abolished by co-exposure to tolbutamide or elevated potassium (i.e. conditions which increase Ca(2+) inflow). Preconditioning with nifedipine, a calcium channel blocker, partly reproduced effects of diazoxide. Both diazoxide and nifedipine moderately reduced basal glucose oxidation whereas glucose-induced oxygen consumption (tested with diazoxide) was unaffected. Preconditioning with diaxoxide enhanced insulin contents in transplants of rat islets to non-diabetic rats and lowered hyperglycemia vs. non-preconditioned islets in streptozotocin-diabetic rats. Preconditioning of human islet transplants lowered hyperglycemia in streptozotocin-diabetic nude mice. CONCLUSIONS: 1) Prior blocking of Ca(2+) inflow associates with lesser hypoxia-induced damage, 2) preconditioning affects basal mitochondrial metabolism and accelerates activation of hypoxia-reactive and potentially protective factors, 3) results indicate that preconditioning by K(+)-ATP-channel openers has therapeutic potential for islet transplantations.
Preconditioning with associated blocking of Ca2+ inflow alleviates hypoxia-induced damage to pancreatic β-cells.
预先处理并阻断 Ca2+ 流入可减轻缺氧引起的胰腺 β 细胞损伤
阅读:7
作者:Ma Zuheng, Moruzzi Noah, Catrina Sergiu-Bogdan, Hals Ingrid, Oberholzer José, Grill Valdemar, Björklund Anneli
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2013 | 起止号: | 2013 Jul 25; 8(7):e67498 |
| doi: | 10.1371/journal.pone.0067498 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
