Sperm motility encompasses a wide range of events involving epididymal maturation and activation of biochemical pathways, most notably cyclic AMP (cAMP)-protein kinase A (PKA) activation. Following the discovery of guanine-nucleotide exchange factors (RAPGEFs), also known as exchange proteins activated by cAMP, we investigated the separate roles of PKA and RAPGEFs in sperm motility. RT-PCR showed the presence of Rapgef3, Rapgef4, and Rapgef5, as well as several known RAPGEF partner mRNAs, in spermatogenic cells. However, Rapgef3 and Rapgef4 appeared to be less abundant in condensing spermatids versus pachytene spermatocytes. Similarly, many of these proteins were detected by immunoblotting. RAPGEF5 was detected in germ cells and murine epididymal sperm. Indirect immunofluorescence localized SGK1, SGK3, AKT1 pT(308), and RAPGEF5 to the acrosome, while PDPK1 was found in the postacrosomal region. SGK3 was present throughout the tail, while PDPK1 and AKT1 pT(308) were in the midpiece. When motility was assessed in demembranated cauda epididymal sperm, addition of ATP and the selective ligand for RAPGEFs, 8-pCPT-2'-O-Me-cAMP, resulted in motility, but the sperm were unable to undergo hyperactivated-like motility. In contrast, when demembranated cauda epididymal sperm were incubated with ATP plus dibutyryl cAMP, sperm became motile and progressed to hyperactivated-like motility. However, no significant difference was observed when intact sperm were examined. GSK3 phosphorylation was altered in the presence of H89, a PKA inhibitor. Significantly, intact caput epididymal sperm became motile when incubated in the presence of extracellular ATP. These results provide evidence for a new pathway involved in endowing sperm with the capacity to swim.
Signaling in sperm: toward a molecular understanding of the acquisition of sperm motility in the mouse epididymis.
精子信号传导:从分子层面理解小鼠附睾中精子运动能力的获得
阅读:3
作者:Vadnais Melissa L, Aghajanian Haig K, Lin Angel, Gerton George L
| 期刊: | Biology of Reproduction | 影响因子: | 3.000 |
| 时间: | 2013 | 起止号: | 2013 Nov 27; 89(5):127 |
| doi: | 10.1095/biolreprod.113.110163 | 种属: | Mouse |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
