Spinocerebellar ataxia (SCA), an autosomal dominant neurodegenerative condition, is marked by a gradual deterioration of cerebellar function. To date, more than 40 distinct SCA subtypes have been identified, with some attributed to CAG repeat expansions and others to point mutations or deletions. Among these, spinocerebellar ataxia type 14 (SCA14) stems from missense mutations or deletions within the PRKCG gene, encoding protein kinase C gamma (PKCγ), a pivotal signaling molecule abundant in Purkinje cells. Despite its significance, the precise mechanisms underlying how genetic alterations trigger Purkinje cell malfunction and degeneration remain elusive. Given the prominent role and high expression of PKCγ in Purkinje cells, SCA14 presents a unique opportunity to unravel the underlying pathogenesis. A straightforward hypothesis posits that alterations in the biological activity of PKCγ underlie the disease phenotype, and there are hints that mutated PKCγ proteins exhibit altered enzymatic function. Our prior research focused on the PKCγ-G118D mutation, commonly found in SCA14 patients, located in the regulatory domain of the protein. While cellular assays demonstrated enhanced enzymatic activity for PKCγ-G118D, transgenic mice carrying this mutation failed to exhibit suppressed dendritic development in cerebellar cultures, raising questions about its impact within living Purkinje cells. One hypothesis is that endogenous PKCγ might interfere with the expression or effect of PKCγ-G118D. To further investigate, we leveraged CRISPR-Cas9 technology to generate a PKCγ knockout mouse model and integrated it with an L7-based, Purkinje cell-specific transfection system to analyze the effects of G118D protein expression on the dendritic morphology of developing Purkinje cells. Our findings reveal that, utilizing this approach, PKCγ-G118D exerts a detrimental effect on Purkinje cell growth, confirming its negative influence, indicating that the potential of the G118D mutation to contribute to SCA14 pathogenesis.
SCA14-Associated PKCγ-G118D Mutant Exhibits a Detrimental Effect on Cerebellar Purkinje Cell Dendritic Growth.
SCA14 相关 PKCγ-G118D 突变体对小脑浦肯野细胞树突生长有不利影响
阅读:5
作者:Wu Qin-Wei, Wang Kejian, Kapfhammer Josef P
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 26(8):3688 |
| doi: | 10.3390/ijms26083688 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
