Anti-influenza A (H1N1) virus effect of gallic acid through inhibition of virulent protein production and association with autophagy.

没食子酸通过抑制毒力蛋白的产生并与自噬相关发挥抗甲型流感病毒(H1N1)的作用

阅读:6
作者:Chang Cheng-Chieh, You Huey-Ling, Su Huey-Jen, Hung I-Ling, Kao Chao-Wei, Huang Sheng-Teng
Influenza remains one of the most serious infectious diseases. Gallic acid is one of the most common and representative phenolic acids found in various plants. This is an interesting subject to explore how gallic acid could inhibit H1N1 influenza virus infection by reducing the production of virulent proteins and interrupting autophagy machinery for influenza virus replication on the host cell. Cellular viability was assessed by XTT assay. The inhibitory effects on the H1N1 influenza virus were assessed by hemagglutination assay, plaque assay, and qRT-PCR. Western blot analysis was used for detecting protein levels of M1, M2, NP, LC3B, and beclin-1. Autophagy activity was demonstrated by acridine orange staining assay. The result demonstrated that there was no cytotoxic effect of gallic acid on A549 cells, and gallic acid could restore the cellular viability of H1N1 influenza virus-infected A549 cells within the experimental concentration treatment. Moreover, gallic acid could effectively restrain viral activity of the H1N1 influenza virus. After the treatment of gallic acid, the production of virulent H1N1 influenza virus proteins, that is, M1, M2, and NP protein were reduced. As for autophagic mechanism, both of the LC3B II conversion and the level ratio of LC3B II to LC3B I were notably decreased. The acridine orange staining assay also revealed decreased accumulation of autophagosomes in H1N1 influenza virus-infected cells. In conclusion, gallic acid suppresses H1N1 influenza viral infectivity through restoration of autophagy pathway and inhibition of virulent M1, M2, and NP protein production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。