Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha.

N-Myc 和缺氧诱导因子 HIF-1α 对神经母细胞瘤肿瘤进展的组合调控

阅读:4
作者:Qing Guoliang, Skuli Nicolas, Mayes Patrick A, Pawel Bruce, Martinez Daniel, Maris John M, Simon M Celeste
In human neuroblastoma, amplification of the MYCN gene predicts poor prognosis and resistance to therapy. Because hypoxia contributes to aggressive tumor phenotypes, predominantly via two structurally related hypoxia inducible factors, HIF-1α and HIF-2α, we examined hypoxia responses in MYCN-amplified neuroblastoma cells. We demonstrate here that HIF-1α, but not HIF-2α, is preferentially expressed in both MYCN-amplified neuroblastoma cells and primary tumors in comparison to samples without MYCN amplification. Our results showed that interplay between N-Myc and HIF-1α plays critical roles in neuroblastoma. For example, high levels of N-Myc override HIF-1α inhibition of cell cycle progression, enabling continued proliferation under hypoxia. Furthermore, both HIF-1α and N-Myc are essential for the Warburg effect (aerobic glycolysis) in neuroblastomas by activating the transcription of multiple glycolytic genes. Of note, expressions of Phosphoglycerate Kinase 1 (PGK1), Hexokinase 2 (HK2), and Lactate Dehydrogenase A (LDHA) were each significantly higher in MYCN-amplified neuroblastomas than in tumors without MYCN amplification. Interestingly, MYCN-amplified neuroblastoma cells are "addicted" to LDHA enzymatic activity, as its depletion completely inhibits tumorigenesis in vivo. Thus, our results provide mechanistic insights explaining how MYCN-amplified neuroblastoma cells contend with hypoxic stress and paradoxically how hypoxia contributes to neuroblastoma aggressiveness through combinatorial effects of N-Myc and HIF-1α. These results also suggest that LDHA represents a novel, pharmacologically tractable target for neuroblastoma therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。