Engineering of CD8(+) T cells with an HIV-specific synthetic notch receptor to secrete broadly therapeutic antibodies for combining antiviral humoral and cellular immune responses.

利用 HIV 特异性合成 Notch 受体改造 CD8(+) T 细胞,使其分泌广谱治疗性抗体,从而结合抗病毒体液和细胞免疫反应

阅读:3
作者:Meng Lina, Zhao Haichi, Chang Shangkun, Li Weiting, Tian Yinghui, Wang Ruihong, Wang Libian, Gu Tiejun, Wu Jiaxin, Yu Bin, Wang Chu, Yu Xianghui
The application of immunotherapeutic strategies, such as chimeric antigen receptor-T cells and broadly neutralizing antibodies (bNAbs), for the treatment of human immunodeficiency virus (HIV) infection is hindered by the latent reservoirs and viral escape. Achieving long-term control of viral load in the absence of antiretroviral therapy requires a combination approach utilizing these immunotherapeutic strategies. For this purpose, we developed novel anti-HIV-1 synthetic Notch (synNotch) receptor-T cells, termed CD4-17b-VN, which express both a bNAb (VRC01) and a bispecific T cell-engaging protein (N6-αCD3) with antigenic control. The synNotch receptor-expressing cells can sense the viral antigen presented on both HIV-1 particles and the surface of target cells. A human T cell line equipped with the CD4-17b-VN circuit could effectively control VRC01 and N6-αCD3 secretion upon sensitization, suppress the infection of diverse subtypes of HIV-1 strains, and mediate specific bypass cytotoxic activity against infected and latency-reactivated cells. Additionally, CD4-17b-VN CD8(+) T cells exhibited long-lasting suppression of infected cells and stronger killing effect on latency-reactivated cells in vitro. Importantly, we demonstrated that the synNotch receptor did not increase susceptibility to HIV-1 infection in the engineered cells. Our study validates the concept of a synNotch platform-based T cell therapeutic approach that can deliver broadly therapeutic antibodies in an HIV-1 antigen-controlled manner, which may have important implications for the functional cure of AIDS.IMPORTANCEAdoptive transfer of effector T cells modified with a chimeric antigen receptor has been proposed as an applicable approach to treat human immunodeficiency virus (HIV) infection. The synNotch receptor (SNR) system serves as a versatile tool, enabling customized programming of input and output functions in mammalian cells. Herein, we report a novel synNotch platform-based approach for T cell engineering targeting both cell-free particles and infected cells by coupling antibody neutralization with cytotoxicity. Our findings demonstrate that the engineered CD4-17b SNR enables controllable production of functional anti-HIV-1 broadly neutralizing antibody and bispecific T cell-engaging protein upon recognition of the viral particle and cell surface antigens by the bifunctional synNotch-T cells. Human primary CD8(+) T cells equipped with the bifunctional synNotch circuit CD4-17b-VN can effectively suppress long-term viral replication and reduce latency-reactivated cells in vitro, without the undesired risk of being infected by the virus, suggesting their potential candidacy for AIDS therapy with prospects for future clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。