Natriuretic peptides are produced predominantly by atrial cardiomyocytes in response to cardiovascular stress and attenuate cardiac maladaptation by reducing blood pressure, blood volume, and cardiac workload primarily through activation of natriuretic peptide receptors in the kidney and vasculature. However, mechanisms underlying cardiomyocyte exocytosis and natriuretic peptide secretion remain poorly defined. Manipulation of Rab3a GTPase activity by Rab3gap1 was recently found to modulate atrial natriuretic peptide (ANP) release by cardiomyocytes. Here, we examined upstream signaling mechanisms and the role of the Rab3a GTPase cycle in exocytosis and ANP secretion by cardiomyocytes. Pharmacological inhibition of the heterotrimeric G protein subunit Gâºq suppressed ANP secretion at baseline and prevented GTP loading of Rab3a and ANP release in neonatal rat cardiomyocytes in response to phenylephrine (PE). Similar to agonist-induced activation of ANP secretion, genetic overexpression of a constitutively active, GTP-loaded Rab3a mutant (Q81L) in neonatal rat cardiomyocytes resulted in enhanced intracellular distribution of Rab3a at endomembranes peripheral to the Golgi and promotion of ANP release, indicating that enhancement of Rab3a activity is sufficient to elicit ANP secretion by cardiomyocytes. Collectively, these data indicate Gâºq signaling downstream of receptor activation and Rab3a-regulated secretory pathway activity and exocytosis facilitate ANP release by cardiomyocytes that could potentially be harnessed to antagonize hypertension and adverse cardiac remodeling in cardiovascular disease.
The Rab3 GTPase cycle modulates cardiomyocyte exocytosis and atrial natriuretic peptide release.
Rab3 GTPase 循环调节心肌细胞胞吐作用和心房利钠肽释放
阅读:5
作者:Essandoh Kobina, Subramani Arasakumar, Koripella Sribharat, Brody Matthew J
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 124(11):1856-1866 |
| doi: | 10.1016/j.bpj.2025.03.013 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
