(1) Background: Capsaicin, a chief ingredient of natural chili peppers, enhances metabolism and energy expenditure and stimulates the browning of white adipose tissue (WAT) and brown fat activation to counter diet-induced obesity. Although capsaicin and its nonpungent analogs are shown to enhance energy expenditure, their efficiency to bind to and activate their receptor-transient receptor potential vanilloid subfamily 1 (TRPV1)-to mediate thermogenic effects remains unclear. (2) Methods: We analyzed the binding efficiency of capsaicin analogs by molecular docking. We fed wild type mice a normal chow or high fat diet (± 0.01% pungent or nonpungent capsaicin analog) and isolated inguinal WAT to analyze the expression of thermogenic genes and proteins. (3) Results: Capsaicin, but not its nonpungent analogs, efficiently binds to TRPV1, prevents high fat diet-induced weight gain, and upregulates thermogenic protein expression in WAT. Molecular docking studies indicate that capsaicin exhibits the highest binding efficacy to TRPV1 because it has a hydrogen bond that anchors it to TRPV1. Capsiate, which lacks the hydrogen bond, and therefore, does not anchor to TRPV1. (4) Conclusions: Long-term activation of TRPV1 is imminent for the anti-obesity effect of capsaicin. Efforts to decrease the pungency of capsaicin will help in advancing it to mitigate obesity and metabolic dysfunction in humans.
Binding Efficacy and Thermogenic Efficiency of Pungent and Nonpungent Analogs of Capsaicin.
辣椒素辛辣味和非辛辣味类似物的结合效力和产热效率
阅读:4
作者:Baskaran Padmamalini, Covington Kyle, Bennis Jane, Mohandass Adithya, Lehmann Teresa, Thyagarajan Baskaran
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2018 | 起止号: | 2018 Dec 4; 23(12):3198 |
| doi: | 10.3390/molecules23123198 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
