Rats and mice are essential experimental animals in preclinical research, serving as models for various human diseases and contributing significantly to drug development. Rats offer distinct advantages over mice due to their larger size, which allows for more complex surgical procedures, repeated blood sampling, or sophisticated behavioral analysis. However, unlike the case with mice, genetically modified rat lines for achieving complex experimental objectives-such as tissue-specific gene knockout or visualization of specific cell populations-are still limited. We here established LoxP-mediated multifunctional reporter KI rats, enabling us to evaluate fluorescence, bioluminescence, and cell-killing assays simultaneously with only one gene-modified rat line. CRISPR/Cas12a, also known as CRISPR/Cpf1, was successfully used to insert the Cre sequence into a target locus to generate Cre driver rats. These results will contribute to the application of gene-modified rats for a more comprehensive understanding of physiology, and for extrapolation of their capabilities in preclinical research.
Establishment of Cre/LoxP-mediated multifunctional reporter knock-in rats with the CRISPR system.
利用 CRISPR 系统建立 Cre/LoxP 介导的多功能报告基因敲入大鼠
阅读:4
作者:Nakamura Katsuyuki, Ito Sara, Ohguchi Yoshihiro, Jimbo Toshie, Wada Yusaku, Nakajima Ryota, Kanou Masanobu, Yamana Kei, Ueda Hiroshi
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 25; 20(6):e0325444 |
| doi: | 10.1371/journal.pone.0325444 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
