A Plasmodium LARC GAP provides preerythrocytic, stage and species transcending protection in mice.

疟原虫 LARC GAP 可在小鼠体内提供红细胞前期、阶段和物种超越的保护

阅读:14
作者:Devi Raksha, Nandi Rohini, Mishra Satish
Malonyl-CoA-acyl carrier protein transacylase (MCAT) catalyzes the transfer of a malonyl moiety from malonyl-CoA to acyl carrier protein during the initiation step of type II fatty acid synthesis (FASII). The Plasmodium FASII pathway was found to be essential for late liver-stage development in rodent malaria parasites. Here, we generated a novel genetically attenuated parasite (GAP) by disrupting Plasmodium MCAT. Deleting MCAT in rodent malaria parasites did not affect asexual blood-stage propagation and mosquito-stage development. MCAT KO sporozoites failed to initiate blood-stage infection in mice. Hepatic MCAT KO parasites showed impaired nuclear division and apicoplast biogenesis. This led to a defect in hepatic merozoite formation and attenuation of parasites during late liver stages. Vaccination of mice with MCAT KO sporozoites exhibited sterilizing immunity against homologous and heterologous species challenge. Further, MCAT KO-immunized mice were able to clear blood stage infection after iRBCs challenge. These findings highlight that late-liver arresting MCAT KO sporozoite is a promising GAP vaccine candidate for inducing pre-erythrocytic, stage, and species-transcending protection in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。