Epigenetic responses in Borrelia-infected Ixodes scapularis ticks: Over-expression of euchromatic histone lysine methyltransferase 2 and no change in DNA methylation.

伯氏疏螺旋体感染的肩胛硬蜱的表观遗传反应:真染色质组蛋白赖氨酸甲基转移酶 2 的过度表达和 DNA 甲基化没有变化

阅读:14
作者:MacIntosh Grace Hadley, Nuyens Alexandra C, Vickery Jessica L, Berthold Anne, Lloyd Vett K
Borrelia burgdorferi, a tick-vectored spirochete bacteria best known for causing Lyme disease, has been found to induce physiological and behavioural changes in its tick vector that can increase tick fitness and its ability to transmit the bacteria. The mechanism by which this bacterium modulates these changes remains unknown. Epigenetics plays a central role in transducing external and internal microbiome environmental influences to the organism, so we investigated DNA methylation and the expression of a key histone modification enzyme in Borrelia-infected and uninfected Ixodes scapularis ticks. DNA methylation of the pericentromeric tandem repeats family, Ixodes scapularis Repeats (ISR), were assessed by methylated-DNA immunoprecipitation (MeDIP) followed by qPCR of the ISR regions. DNA methylation of the ISR sequences was found. The different repeats had different levels of DNA methylation, however, these levels were not significantly affected by the presence or absence of B. burgdorferi. The epigenetic regulator euchromatic histone lysine methyltransferase 2 (EHMT2) is recognized as having a key role in modulating the organismal stress response to infections. To assess EHMT2 transcription in Borrelia-infected and uninfected ticks, real-time reverse transcriptase PCR was performed. Uninfected ticks had over 800X lower EHMT2 expression than infected ticks. This study is among the first to identify a gene that may be involved in producing epigenetic differences in ticks depending on infection status and lays the groundwork for future epigenetic studies of I. scapularis in response to B. burgdorferi as well as other pathogens that these ticks transmit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。