BACKGROUND: Mutations in cancer cells can result in the production of neoepitopes that can be recognized by T cells and trigger an immune response. A reliable pipeline to identify such immunogenic neoepitopes for a given tumor would be beneficial for the design of cancer immunotherapies. Current methods, such as the pipeline proposed by the Tumor Neoantigen Selection Alliance (TESLA), aim to select short peptides with the highest likelihood to be MHC-I restricted minimal epitopes. Typically, only a small percentage of these predicted epitopes are recognized by T cells when tested experimentally. This is particularly problematic as the limited amount of sample available from patients that are acutely sick restricts the number of peptides that can be tested in practice. This led our group to develop an in-house pipeline termed Identify-Prioritize-Validate (IPV) that identifies long peptides that cover both CD4 and CD8 epitopes. METHODS: Here, we systematically compared how IPV performs compared to the TESLA pipeline. Patient peripheral blood mononuclear cells were cultured in vitro with their corresponding candidate peptides, and immune recognition was measured using cytokine-secretion assays. RESULTS: The IPV pipeline consistently outperformed the TESLA pipeline in predicting neoepitopes that elicited an immune response in our assay. This was primarily due to the inclusion of longer peptides in IPV compared to TESLA. CONCLUSIONS: Our work underscores the improved predictive ability of IPV in comparison to TESLA in this assay system and highlights the need to clearly define which experimental metrics are used to evaluate bioinformatic epitope predictions.
Comparative performance analysis of neoepitope prediction algorithms in head and neck cancer.
头颈癌新抗原预测算法的性能比较分析
阅读:13
作者:Chihab Leila Y, Burel Julie G, Miller Aaron M, Westernberg Luise, Brown Brandee, Greenbaum Jason, Korrer Michael J, Schoenberger Stephen P, Joyce Sebastian, Kim Young J, KoÅaloÄlu-Yalçin Zeynep, Peters Bjoern
| 期刊: | Frontiers in Immunology | 影响因子: | 5.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 16:1494453 |
| doi: | 10.3389/fimmu.2025.1494453 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
