Antisense oligonucleotides (ASOs), including splice-switching oligonucleotides (SSOs), are promising therapeutic approaches for targeting genetic defects. ASOs act in the nucleus and the cytosol to cleave mRNAs via the RNaseH1 mechanism (e.g., gapmers), while SSOs alter transcript splicing to restore or inhibit protein function. RNA interference (RNAi) is another approach to down-regulate gene expression via the RISC complex. However, a major challenge is the effective delivery of these nucleic acid-based therapeutics. Recent developments focus on enhancing cellular uptake and endosomal release, including the use of small-molecule endosomal escape enhancers (EEEs) such as chloroquine. Here, we disclose a next generation of EEEs, which efficiently enhance SSOs and gapmers in vitro activity. We identify proton sponge-mediated endosomal leakage as a mechanism of action and observe, by Gene Ontology analysis on bulk RNA sequencing, that EEE treatment increased gene expression of markers associated with vesicle organization. Additionally, using primary human hepatocytes, we demonstrate that EEEs enhance small interfering RNA (siRNA) activity. Unconjugated siRNA reached similar levels of mRNA knockdown to the observed GalNAc-conjugated siRNA. Substantial GalNAc conjugated siRNA enhancement was also observed when used together with EEE. Our results indicate that these EEEs constitute a promising strategy to enhance the activity of multimodal oligonucleotide therapeutics.
Design and screening of novel endosomal escape compounds that enhance functional delivery of oligonucleotides in vitro.
设计和筛选新型内体逃逸化合物,以增强寡核苷酸在体外的功能性递送
阅读:14
作者:Estupiñán H Yesid, Baladi Tom, Roudi Samantha, Munson Michael J, Bost Jeremy, Gustafsson Oskar, Velásquez-RamÃrez Daniel, Bhatt Deepak Kumar, Hagey Daniel, Hekman Dennis, Andersson Shalini, Andaloussi Samir El, Dahlén Anders
| 期刊: | Molecular Therapy-Nucleic Acids | 影响因子: | 6.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 20; 36(2):102522 |
| doi: | 10.1016/j.omtn.2025.102522 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
