Obesity is associated with chronic low-grade inflammation in peripheral tissues, which contributes to the development of comorbidities such as insulin resistance and cardiovascular disease. While less extensively characterized, obesity also promotes inflammation in the central nervous system (CNS) and the consequences of this inflammation for CNS function are only beginning to be examined. In response to CNS insults such as inflammation, astrocytes undergo a process of hypertrophy and hyperplasia known as reactive astrogliosis. We used immunohistochemistry to examine the differential distribution of the astrocyte marker glial-fibrillary acidic protein (GFAP) in the brains of diet-induced or genetically obese mice compared with their respective lean controls to determine whether different nuclei of the hypothalamus showed comparable astrogliosis in response to obesity. The areas that showed the highest differential GFAP immunoreactivity between lean and obese animals include the medial preoptic, paraventricular, and dorsomedial nuclei. Comparatively, little astrogliosis was seen in the ventromedial nucleus, lateral hypothalamus, or anterior hypothalamic area. In obese animals high levels of GFAP immunoreactivity were often associated with the microvasculature. There were no differences in the differential distribution of GFAP staining between obese animals and their lean controls in the diet-induced compared with the genetic model of obesity. The exact cause(s) of the astrogliosis in obesity is not known. The finding that obesity causes a distinct pattern of elevated GFAP immunoreactivity associated with microvessels suggests that the astrogliosis may be occurring as a response to changes at the blood-brain barrier and/or in the peripheral circulation.
Regional astrogliosis in the mouse hypothalamus in response to obesity.
肥胖可引起小鼠下丘脑区域性星形胶质增生
阅读:5
作者:Buckman Laura B, Thompson Misty M, Moreno Heidi N, Ellacott Kate L J
| 期刊: | Journal of Comparative Neurology | 影响因子: | 2.100 |
| 时间: | 2013 | 起止号: | 2013 Apr 15; 521(6):1322-33 |
| doi: | 10.1002/cne.23233 | 种属: | Mouse |
| 研究方向: | 代谢 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
