One of the most common issues in producing membrane proteins in heterologous expression systems is the low yield of purified protein. The solubilization efficiency of the recombinant membrane protein from biological membranes is often the limiting step. Here, we study the effects of titration of the GAL10-CYC promoter of Saccharomyces cerevisiae, induction time, and culture media, on the rat mitochondrial uncoupling protein (UCP1) production and solubilization levels. We found that a maximum threshold of solubilized UCP1 (70%) is reached at 0.003% galactose concentration, independently of time, temperature, and detergent-to-protein ratio during solubilization. Supplementation with 0.1% amino acids of the S-lactate medium at induction resumes cell growth and recombinant protein production. The purified UCP1 protein (0.2âmg/L) is homogenous in DDM detergent and active after reconstitution in proteoliposomes. To extend the impact of our findings, we applied the same promoter titration to produce the GFP-AT7B human transporter and found an optimal galactose concentration of 0.0015%. The protein data bank analysis revealed that these galactose concentrations are 300 times lower than usual. We propose a novel strategy for the recombinant production of membrane proteins in the yeast S. cerevisiae, which unlocks the use of this inexpensive eukaryotic host for membrane protein production.
Fine-tuning the yeast GAL10 promoter and growth conditions for efficient recombinant membrane protein production and purification.
对酵母 GAL10 启动子和生长条件进行微调,以实现高效的重组膜蛋白生产和纯化
阅读:6
作者:Moussa Rebecca, Gellé François, Masscheleyn Sandrine, Pozza Alexandre, Le Bon Christel, Moncoq Karine, Bonneté Françoise, Miroux Bruno
| 期刊: | Protein Science | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 May;34(5):e70125 |
| doi: | 10.1002/pro.70125 | 种属: | Yeast |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
