FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods.

FusorSV:一种用于优化结合来自多种结构变异检测方法的数据的算法

阅读:10
作者:Becker Timothy, Lee Wan-Ping, Leone Joseph, Zhu Qihui, Zhang Chengsheng, Liu Silvia, Sargent Jack, Shanker Kritika, Mil-Homens Adam, Cerveira Eliza, Ryan Mallory, Cha Jane, Navarro Fabio C P, Galeev Timur, Gerstein Mark, Mills Ryan E, Shin Dong-Guk, Lee Charles, Malhotra Ankit
Comprehensive and accurate identification of structural variations (SVs) from next generation sequencing data remains a major challenge. We develop FusorSV, which uses a data mining approach to assess performance and merge callsets from an ensemble of SV-calling algorithms. It includes a fusion model built using analysis of 27 deep-coverage human genomes from the 1000 Genomes Project. We identify 843 novel SV calls that were not reported by the 1000 Genomes Project for these 27 samples. Experimental validation of a subset of these calls yields a validation rate of 86.7%. FusorSV is available at https://github.com/TheJacksonLaboratory/SVE .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。