FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods.

FusorSV:一种用于优化结合来自多种结构变异检测方法的数据的算法

阅读:5
作者:Becker Timothy, Lee Wan-Ping, Leone Joseph, Zhu Qihui, Zhang Chengsheng, Liu Silvia, Sargent Jack, Shanker Kritika, Mil-Homens Adam, Cerveira Eliza, Ryan Mallory, Cha Jane, Navarro Fabio C P, Galeev Timur, Gerstein Mark, Mills Ryan E, Shin Dong-Guk, Lee Charles, Malhotra Ankit
Comprehensive and accurate identification of structural variations (SVs) from next generation sequencing data remains a major challenge. We develop FusorSV, which uses a data mining approach to assess performance and merge callsets from an ensemble of SV-calling algorithms. It includes a fusion model built using analysis of 27 deep-coverage human genomes from the 1000 Genomes Project. We identify 843 novel SV calls that were not reported by the 1000 Genomes Project for these 27 samples. Experimental validation of a subset of these calls yields a validation rate of 86.7%. FusorSV is available at https://github.com/TheJacksonLaboratory/SVE .

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。