PURPOSE: Studying the role of nanoparticles in plant cryopreservation is essential for developing innovative methods to conserve plant genetic resources amid environmental challenges. This research investigated the effects of gold (AuNPs), silver (AgNPs), and zinc oxide (ZnONPs) nanoparticles on the structural integrity, genetic stability, and metabolic activity of cryopreserved plant materials with medicinal properties. METHODS: Shoot tips from two bleeding heart (Lamprocapnos spectabilis (L). Fukuhara) cultivars, 'Gold Heart' and 'Valentine', were cryopreserved using the encapsulation-vitrification technique, with nanoparticles added at concentrations of 5 or 15 ppm during either the preculture phase or the alginate bead matrix formation. Post-recovery, the plants underwent histological, molecular, and biochemical analyses. RESULTS: Electron microscopy observations of LN-derived plant material confirmed the production of micro-morpho-structurally stable cells. It was found that nanoparticles could penetrate the cell and accumulate in its various compartments, including the nucleus. As for the genetic analysis, SCoT markers identified polymorphisms in 11.5% of 'Gold Heart' plants, while RAPDs detected mutations in 1.9% of 'Valentine' specimens. Analysis of Molecular Variance (AMOVA) indicated that in the 'Valentine' cultivar, all genetic variation detected was within populations and not significantly affected by nanoparticle treatments. In 'Gold Heart', the majority (94%) of genetic variation detected was within populations, while 6% was attributed to nanoparticle treatments (mostly the application of 15 ppm ZnONPs). The application of nanoparticles significantly influenced the metabolic profile of bleeding heart plants, particularly affecting the synthesis of phenolic acids and aldehydes, as well as the antioxidant mechanisms in both 'Gold Heart' and 'Valentine' cultivars. The content of proteins was altered in 'Gold Heart' plants but not in 'Valentine'. CONCLUSION: The results suggest that different types and concentrations of NPs have varying effects on the production of specific metabolites, which could be harnessed to modulate plant secondary metabolism for desired pharmacological outcomes.
Nanoparticles in Plant Cryopreservation: Effects on Genetic Stability, Metabolic Profiles, and Structural Integrity in Bleeding Heart (Papaveraceae) Cultivars.
纳米颗粒在植物冷冻保存中的应用:对荷包牡丹(罂粟科)栽培品种的遗传稳定性、代谢谱和结构完整性的影响
阅读:10
作者:Kulus Dariusz, Tymoszuk Alicja, KulpiÅska Alicja, DÄbska Bożena, Michalska Agata, Nowakowska Julita, Wichrowska Dorota, Wojnarowicz Jacek, SzaÅaj Urszula
| 期刊: | Nanotechnology Science and Applications | 影响因子: | 2.400 |
| 时间: | 2025 | 起止号: | 2025 Feb 17; 18:35-56 |
| doi: | 10.2147/NSA.S485428 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
