Investigating the molecular mechanisms of delirium-like neuropsychiatric disorder induced by electromagnetic pulse based on bioinformatics analysis

基于生物信息学分析探讨电磁脉冲诱发谵妄样神经精神疾病的分子机制

阅读:5
作者:Xia-Jing Zhang #, Zhi-Bin Xiao #, Jun-Xiang Gu #, Kun Chen, Jian Wang, Sheng-Long Xu, Ke-Ke Xing, Tao Chen

Abstract

Electromagnetic pulse (EMP), a unique type of electromagnetic radiation, may induce diverse neuropsychiatric disorders, such as irritability, hyperkinesis, retardation of learning and memory. However, the underlying mechanism of EMP exposure on neuronal injury has not been elucidated. Here, we aimed to delineate the regulatory expression networks based on high-throughput sequencing data to explore the possible molecular mechanisms related to EMP-induced delirium-like neuropsychiatric disorder in rats. It's shown that EMP exposure induced anxiety, cognitive decline and short-term memory impairment. The expression profiles of the long noncoding RNAs (lncRNAs) and mRNAs, along with their biological function and regulatory network, were explored in rats after EMP exposure. We identified 41 differentially expressed lncRNAs (DELs) and 266 differentially expressed mRNAs (DEMs) between EMP and sham groups. Sixty-one co-expression relationships between 18 DELs and 56 DEMs were mostly associated with synapse- and metabolic-related pathways. We predicted 51 DEL-miRNA pairs and 290 miRNA-mRNA pairs using the miRanda database to constructed a DEL-miRNA-DEM network. LncRNA AABR07042999.1 and mRNA Tph2, Slc6a4, Dbh and Th were upregulated, and the contents of serotonin, dopamine and norepinephrine were increased in both PFC and HIP after EMP exposure. The current study provided a better understanding of the ceRNA network, which might reveal the pathological mechanism and provide more treatment options for the EMP-induced neurobehavioral disorder.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。