The mTOR Inhibitor Rapamycin Mitigates Perforant Pathway Neurodegeneration and Synapse Loss in a Mouse Model of Early-Stage Alzheimer-Type Tauopathy

mTOR 抑制剂雷帕霉素可减轻早期阿尔茨海默型 Tau 蛋白病小鼠模型中的穿通通路神经变性和突触丢失

阅读:5
作者:Robert Siman, Ryan Cocca, Yina Dong

Abstract

The perforant pathway projection from layer II of the entorhinal cortex to the hippocampal dentate gyrus is especially important for long-term memory formation, and is preferentially vulnerable to developing a degenerative tauopathy early in Alzheimer's disease (AD) that may spread over time trans-synaptically. Despite the importance of the perforant pathway to the clinical onset and progression of AD, a therapeutic has not been identified yet that protects it from tau-mediated toxicity. Here, we used an adeno-associated viral vector-based mouse model of early-stage AD-type tauopathy to investigate effects of the mTOR inhibitor and autophagy stimulator rapamycin on the tau-driven loss of perforant pathway neurons and synapses. Focal expression of human tau carrying a P301L mutation but not eGFP as a control in layer II of the lateral entorhinal cortex triggered rapid degeneration of these neurons, loss of lateral perforant pathway synapses in the dentate gyrus outer molecular layer, and activation of neuroinflammatory microglia and astroglia in the two locations. Chronic systemic rapamycin treatment partially inhibited phosphorylation of a mechanistic target of rapamycin substrate in brain and stimulated LC3 cleavage, a marker of autophagic flux. Compared with vehicle-treated controls, rapamycin protected against the tau-induced neuronal loss, synaptotoxicity, reactive microgliosis and astrogliosis, and activation of innate neuroimmunity. It did not alter human tau mRNA or total protein levels. Finally, rapamycin inhibited trans-synaptic transfer of human tau expression to the dentate granule neuron targets for the perforant pathway, likely by preventing the synaptic spread of the AAV vector in response to pathway degeneration. These results identify systemic rapamycin as a treatment that protects the entorhinal cortex and perforant pathway projection from tau-mediated neurodegeneration, axonal and synapse loss, and neuroinflammatory reactive gliosis. The findings support the potential for slowing the progression of AD by abrogating tau-mediated neurotoxicity at its earliest neuropathological stages.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。