Persistent overexpression of phosphoglycerate mutase, a glycolytic enzyme, modifies energy metabolism and reduces stress resistance of heart in mice

糖酵解酶磷酸甘油酸变位酶的持续过表达会改变小鼠的能量代谢并降低心脏的抗应激能力

阅读:3
作者:Junji Okuda, Shinnichiro Niizuma, Tetsuo Shioi, Takao Kato, Yasutaka Inuzuka, Tsuneaki Kawashima, Yodo Tamaki, Akira Kawamoto, Yohei Tanada, Yoshitaka Iwanaga, Michiko Narazaki, Tetsuya Matsuda, Souichi Adachi, Tomoyoshi Soga, Genzou Takemura, Hiroshi Kondoh, Toru Kita, Takeshi Kimura

Background

Heart failure is associated with changes in cardiac energy metabolism. Glucose metabolism in particular is thought to be important in the pathogenesis of heart failure. We examined the effects of persistent overexpression of phosphoglycerate mutase 2 (Pgam2), a glycolytic enzyme, on cardiac energy metabolism and function.

Conclusions

Constitutive overexpression of Pgam2 modified energy metabolism and reduced stress resistance of heart in mice.

Results

Transgenic mice constitutively overexpressing Pgam2 in a heart-specific manner were generated, and cardiac energy metabolism and function were analyzed. Cardiac function at rest was normal. The uptake of analogs of glucose or fatty acids and the phosphocreatine/βATP ratio at rest were normal. A comprehensive metabolomic analysis revealed an increase in the levels of a few metabolites immediately upstream and downstream of Pgam2 in the glycolytic pathway, whereas the levels of metabolites in the initial few steps of glycolysis and lactate remained unchanged. The levels of metabolites in the tricarboxylic acid (TCA) cycle were altered. The capacity for respiration by isolated mitochondria in vitro was decreased, and that for the generation of reactive oxygen species (ROS) in vitro was increased. Impaired cardiac function was observed in response to dobutamine. Mice developed systolic dysfunction upon pressure overload. Conclusions: Constitutive overexpression of Pgam2 modified energy metabolism and reduced stress resistance of heart in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。