Functionalized SnO2 nanoparticles with gallic acid via green chemical approach for enhanced photocatalytic degradation of citalopram: synthesis, characterization and application to pharmaceutical wastewater treatment

通过绿色化学方法用没食子酸功能化 SnO2 纳米粒子以增强西酞普兰的光催化降解:合成、表征及在制药废水处理中的应用

阅读:9
作者:Veronia S Nazim, Ghada M El-Sayed, Sawsan M Amer, Ahmed H Nadim

Abstract

Eco-friendly stannic oxide nanoparticles functionalized with gallic acid (SnO2/GA NP) were synthesized and employed as a novel photocatalyst for the degradation of citalopram, a commonly prescribed antidepressant drug. SnO2/GA NP were characterized using high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller measurements and X-ray diffraction. A validated RP-HPLC assay was developed to monitor citalopram concentration in the presence of its degradation products. Full factorial design (24) was conducted to investigate the effect of irradiation time, pH, SnO2/GA NP loading and initial citalopram concentration on the efficiency of the photodegradation process. Citalopram initial concentration was found to be the most significant parameter followed by irradiation time and pH, respectively. At optimum conditions, 88.43 ± 0.7% degradation of citalopram (25.00 µg/mL) was obtained in 1 h using UV light (1.01 mW/cm2). Citalopram kinetics of degradation followed pseudo-first order rate with Kobs and t0.5 of - 0.037 min-1 and 18.73 min, respectively. The optimized protocol was successfully applied for treatment of water samples collected during different cleaning validation cycles of citalopram production lines. The reusability of SnO2/GA NP was studied for 3 cycles without significant loss in activity. This approach would provide a green and economic alternative for pharmaceutical wastewater treatment of organic pollutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。