Determination and risk assessment of UV filters and benzotriazole UV stabilizers in wastewater from a wastewater treatment plant in Lüneburg, Germany

德国吕讷堡污水处理厂废水中紫外线过滤剂和苯并三唑紫外线稳定剂的测定和风险评估

阅读:10
作者:Akinranti S Ajibola, Marco Reich, Klaus Kümmerer

Abstract

UV filters and benzotriazole UV stabilizers are considered emerging contaminants in the environment. LC-MS/MS and GC-MS methods, involving a single solid phase extraction protocol, were developed and validated to determine eight UV filters and seven UV stabilizers, respectively in wastewater from a wastewater treatment plant (WWTP) in Lüneburg, Germany. The LC-MS/MS method exhibited extraction recoveries of ≥ 71% at six different fortification levels with limits of detection (LODs) range of 0.02 ng mL-1 - 0.09 ng mL-1. Extraction recoveries of 47 to 119% at six different fortification levels were obtained for the GC-MS method with LODs range of 0.01 - 0.09 ng mL-1. Among the UV filters, the highest mean concentration was determined for octocrylene (OCR) in influent (3.49 ng mL-1) while the highest mean concentration was measured for 2-hydroxy-4-octyloxybenzophenone (UV 531) in influent (0.44 ng mL-1) among the UV stabilizers. Potential risk to aquatic organisms was assessed by the risk quotient approach. Only OCR presented a high risk to aquatic invertebrates whereas 2-ethylhexyl 4-methoxycinnamate (EHMC) and 2-ethylhexyl salicylate (EHS) posed high risks to algae. Benzotriazole UV stabilizers presented negligible risks to aquatic invertebrates and fish. This work reports the detection of rarely studied 4-aminobenzoic acid (PABA) and UV 531 in WWTP influent and effluent. The occurrence and risk assessment of target benzotriazole UV stabilizers in wastewater from a German WWTP was demonstrated for the first time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。