Microtubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells

p150(Glued) 的微管正端加载由 EB1 和 CLIP-170 介导,但对于哺乳动物细胞中的细胞内膜运输而言并非必需

阅读:8
作者:Peter Watson, David J Stephens

Abstract

Microtubule dynamics and function are regulated, at least in part, by a family of proteins that localize to microtubule plus-ends, and include EB1, CLIP-170 and the dynactin component p150(Glued). Plus-end pools of these proteins, notably dynactin, have been invoked in a number of ;search-and-capture' mechanisms, including the attachment of microtubules to kinetochores during mitosis and to endomembranes prior to the initiation of intracellular transport. Here we show that, in mammalian cells, EB1 is required for the plus-end localization of CLIP-170, and that this is in turn required to localize p150(Glued) to plus-ends. Specific depletion of CLIP-170 results in defects in microtubule dynamics, cell polarization in response to scratch wounding and a loss of p150(Glued) from plus ends. By contrast, removal of p150(Glued) from plus-ends by depletion of either EB1 or CLIP-170 caused no defects in the localization of intracellular organelles, the dynamics of ER-to-Golgi transport, the efficiency of transferrin uptake or the motility of early endosomes or lysosomes. In addition to labelling microtubule plus-ends, we show that GFP-p150(Glued) becomes incorporated into the dynactin complex and labels small, highly dynamic, punctate structures that move along microtubules. A subset of these structures colocalizes with ER-Golgi transport intermediates. Together, these data show that the function of CLIP-170 and p150(Glued) in membrane trafficking is not associated with their plus-end localization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。