Ultrasound-mediated mechanical forces activate selective tumor cell apoptosis

超声介导的机械力激活选择性肿瘤细胞凋亡

阅读:7
作者:Ajay Tijore, Felix Margadant, Nehal Dwivedi, Leslie Morgan, Mingxi Yao, Anushya Hariharan, Claire Alexandra Zhen Chew, Simon Powell, Glenn Kunnath Bonney, Michael Sheetz

Abstract

Recent studies show that tumor cells undergo apoptosis after mechanical stretching, which promotes normal cell growth. Since ultrasound can produce similar sub-cellular mechanical stresses on the nanoscale, here we test the effect of ultrasound-mediated mechanical forces on tumors and normal cell survival. Surprisingly, tumor cells undergo apoptosis through a calpain-dependent mitochondrial pathway that relies upon calcium entry through the mechanosensitive Piezo1 channels. This is a general property of all tumor cell lines tested irrespective of tissue origin, but normal cells are unaffected. In vivo, ultrasound treatment promotes tumor cell killing in a mouse model with invasive CT26 cancer cell subcutaneous tumors and in the chick chorioallantoic membrane (CAM) model with relatively minor damage to chick embryos. Further, patient-derived pancreatic tumor organoids are killed by ultrasound treatment. Because ultrasound-mediated mechanical forces cause apoptosis of tumor cells from many different tissues in different microenvironments, it may offer a safe, non-invasive approach to augment tumor treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。