Polymeric nanoparticle-based delivery of TRAIL DNA for cancer-specific killing

基于聚合物纳米颗粒的 TRAIL DNA 递送技术用于癌症特异性杀灭

阅读:8
作者:Stephany Y Tzeng, David R Wilson, Sarah K Hansen, Alfredo Quiñones-Hinojosa, Jordan J Green

Abstract

Lack of specificity in cancer therapeutics severely limits the efficacy of many existing treatment modalities. The use of Tumor Necrosis Factor-related Apoptosis-Inducing Ligand (TRAIL) is of interest to the field due to this protein's ability to cause cell death specifically in cancer cells without harming the surrounding healthy tissue. Here, we report that polymeric nanoparticles, based on synthetic poly(beta-amino ester)s (PBAEs) and containing DNA, are able to selectively transfect cancer cells in vitro over healthy cells of the same tissue type. Moreover, PBAE-based nanoparticles containing TRAIL DNA are able to transfect several human cancer cell cultures in vitro and cause cell death. While certain cell types, including human glioblastoma (GBM), showed resistance to TRAIL, we found that the expression of TRAIL-binding surface proteins was predictive of each cell type's resistance to TRAIL therapy. We demonstrate a non-viral nanomedicine approach to cancer gene therapy that can improve cancer specificity via both biomaterial selection and through the use of cancer-targeting genetic cargo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。