Nanoarchitectonics of the Effects of Curcumin Carbon Dot-Decorated Chitosan Nanoparticles on Proliferation and Apoptosis-Related Gene Expressions in HepG2 Hepatocellular Carcinoma Cells

姜黄素碳点修饰壳聚糖纳米粒子对HepG2肝癌细胞增殖和凋亡相关基因表达影响的纳米结构

阅读:4
作者:Hasan Ilhan

Abstract

This study examines the potential anticancer properties of curcumin carbon nanodot-decorated chitosan nanoparticles (CCM@CD/CS-NP) in HepG2 hepatocellular carcinoma cells. CCM@CD/CS-NPs were synthesized, and their size, morphology, and elemental analysis were characterized. The combination of curcumin carbon dots and chitosan in the form of a nanoparticle has a number of benefits, including improved solubility and bioavailability of curcumin, enhanced stability and biocompatibility of carbon dots, and sustained release of the drug due to the mucoadhesive properties of chitosan. The purpose of this research was to examine the efficacy of curcumin carbon dot-decorated chitosan nanoparticles as an anticancer agent in the treatment of HepG2 cell lines. The cell proliferation and apoptosis-related gene expressions in HepG2 cells were assessed to investigate the potential use of nanoparticles in vitro. The IC50 value for the inhibitory effect of CCM@CD/CS-NPs on cell growth and proliferation was determined to be 323.61 μg/mL at 24 h and 267.73 μg/mL at 48 h. Increased caspase-3 and -9 activation shows that CCM@CD/CS-NPs promoted apoptosis in HepG2 cells. It was also shown that the overexpression of Bax and the downregulation of Bcl-2 were responsible for the apoptotic impact of CCM@CD/CS-NPs. The nanoparticles have been shown to have minimal toxicity to normal liver cells, indicating their potential as a safe and effective treatment for HepG2. These novel nanomaterials effectively suppressed tumor development and boosted the rate of apoptotic cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。