A study of the structure-affinity relationship in SYA16263; is a D2 receptor interaction essential for inhibition of apormorphine-induced climbing behavior in mice?

SYA16263 的结构亲和力关系研究;D2 受体相互作用对于抑制阿扑吗啡诱导的小鼠攀爬行为是否至关重要?

阅读:9
作者:Edem K Onyameh, Barbara A Bricker, Suresh V K Eyunni, Chandrashekhar Voshavar, Uma M Gonela, Edward Ofori, Andrea Jenkins, Seth Y Ablordeppey

Abstract

Dopamine (DA) and serotonin (5-HT) receptors are prime targets for the development of antipsychotics. The specific role of each receptor subtype to the pharmacological effects of antipsychotic drugs remains unclear. Understanding the relationship between antipsychotic drugs and their binding affinities at DA and 5-HT receptor subtypes is very important for antipsychotic drug discovery and could lead to new drugs with enhanced efficacies. We have previously disclosed SYA16263 (5) as an interesting compound with moderate radioligand binding affinity at the D2 & D3 receptors (Ki = 124 nM & 86 nM respectively) and high binding affinities towards D4 and 5-HT1A receptors (Ki = 3.5 nM & 1.1 nM respectively). Furthermore, we have demonstrated SYA16263 (5) is functionally selective and produces antipsychotic-like behavior but without inducing catalepsy in rats. Based on its pharmacological profile, we selected SYA16263 (5) to study its structure-affinity relationship with a view to obtaining new analogs that display receptor subtype selectivity. In this study, we present the synthesis of structurally modified SYA16263 (5) analogs and their receptor binding affinities at the DA and 5-HT receptor subtypes associated with antipsychotic action. Furthermore, we have identified compound 21 with no significant binding affinity at the D2 receptor subtype but with moderate binding affinity at the D3 and D4 receptors subtypes. However, because 21 is able to demonstrate antipsychotic-like activity in a preliminary test, using the reversal of apomorphine-induced climbing behavior experiment in mice with SYA16263 and haloperidol as positive controls, we question the essential need of the D2 receptor subtype in reversing apomorphine-induced climbing behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。