Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features

槲皮素-3-β-半乳糖苷及其合成衍生物与 SARS-CoV 3CL(pro) 的结合相互作用:构效关系研究揭示了显著的药效团特征

阅读:6
作者:Lili Chen, Jian Li, Cheng Luo, Hong Liu, Weijun Xu, Gang Chen, Oi Wah Liew, Weiliang Zhu, Chum Mok Puah, Xu Shen, Hualiang Jiang

Abstract

The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for discovery of drugs against SARS, because of its critical role in the viral life cycle. In this study, a natural compound called quercetin-3-beta-galactoside was identified as an inhibitor of the protease by molecular docking, SPR/FRET-based bioassays, and mutagenesis studies. Both molecular modeling and Q189A mutation revealed that Gln189 plays a key role in the binding. Furthermore, experimental evidence showed that the secondary structure and enzymatic activity of SARS-CoV 3CL(pro) were not affected by the Q189A mutation. With the help of molecular modeling, eight new derivatives of the natural product were designed and synthesized. Bioassay results reveal salient features of the structure-activity relationship of the new compounds: (1) removal of the 7-hydroxy group of the quercetin moiety decreases the bioactivity of the derivatives; (2) acetoxylation of the sugar moiety abolishes inhibitor action; (3) introduction of a large sugar substituent on 7-hydroxy of quercetin can be tolerated; (4) replacement of the galactose moiety with other sugars does not affect inhibitor potency. This study not only reveals a new class of compounds as potential drug leads against the SARS virus, but also provides a solid understanding of the mechanism of inhibition against the target enzyme.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。