A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood

一种基于膜的微流体装置,用于控制血小板激动剂流入流动血液

阅读:5
作者:Keith B Neeves, Scott L Diamond

Abstract

The flux of platelet agonists into flowing blood is a critical event in thrombosis and hemostasis. However, few in vitro methods exist for examining and controlling the role of platelet agonists on clot formation and stability under hemodynamic conditions. In this paper, we describe a membrane-based method for introducing a solute into flowing blood at a defined flux. The device consisted of a track-etched polycarbonate membrane reversibly sealed between two microfluidic channels; one channel contained blood flowing at a physiologically relevant shear rate, and the other channel contained the agonist(s). An analytical model described the solute flux as a function of the membrane permeability and transmembrane pressure. The model was validated using luciferase as a model solute for transmembrane pressures of 50-400 Pa. As a proof-of-concept, the weak platelet agonist ADP was introduced into whole blood flowing at 250 s(-1) at three fluxes (1.5, 2.4, and 4.4 x 10(-18) mol microm(-2) s(-1)). Platelet aggregation was monitored by fluorescence microscopy during the experiment and the morphology of aggregates was determined by post hoc confocal and electron microscopy. At the lowest flux (1.5 x 10(-18) mol microm(-2) s(-1)), we observed little to no aggregation. At the higher fluxes, we observed monolayer (2.4 x 10(-18) mol microm(-2) s(-1)) and multilayer (4.4 x 10(-18) mol microm(-2) s(-1)) aggregates of platelets and found that the platelet density within an aggregate increased with increasing ADP flux. We expect this device to be a useful tool in unraveling the role of platelet agonists on clot formation and stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。