Background
Muscle atrophy caused by denervation is common in neuromuscular diseases, leading to loss of muscle mass and function. However, a comprehensive understanding of the overall molecular network changes during muscle denervation atrophy is still deficient, hindering the development of effective treatments. Method: In this study, a sciatic nerve transection model was employed in male C57BL/6 J mice to induce muscle denervation atrophy. Gastrocnemius muscles were harvested at 3 days, 2 weeks, and 4 weeks post-denervation for transcriptomic and proteomic analysis. An integrative multi-omics approach was utilized to identify key genes essential for disease progression. Targeted proteomics using PRM was then employed to validate the differential expression of central genes. Combine single-nucleus sequencing
Conclusion
In our study, we revealed the crucial role of oxidative stress, glucose metabolism, and mitochondrial dysfunction in denervation-induced muscle atrophy, identifying NRF2 as a potential therapeutic target. Omaveloxolone was shown to stabilize mitochondrial function, enhance antioxidant capacity, and protect neuromuscular junctions, thereby offering promising therapeutic potential for treating denervation-induced muscle atrophy.
