Diagnosis of pregnancy disorder in the first-trimester patient plasma with Raman spectroscopy and protein analysis

利用拉曼光谱和蛋白质分析诊断妊娠早期患者血浆中的妊娠异常

阅读:9
作者:Ansuja P Mathew, Gabriel Cutshaw, Olivia Appel, Meghan Funk, Lilly Synan, Joshua Waite, Saman Ghazvini, Xiaona Wen, Soumik Sarkar, Mark Santillan, Donna Santillan, Rizia Bardhan

Abstract

Gestational diabetes mellitus (GDM) is a pregnancy disorder associated with short- and long-term adverse outcomes in both mothers and infants. The current clinical test of blood glucose levels late in the second trimester is inadequate for early detection of GDM. Here we show the utility of Raman spectroscopy (RS) for rapid and highly sensitive maternal metabolome screening for GDM in the first trimester. Key metabolites, including phospholipids, carbohydrates, and major amino acids, were identified with RS and validated with mass spectrometry, enabling insights into associated metabolic pathway enrichment. Using classical machine learning (ML) approaches, we showed the performance of the RS metabolic model (cross-validation AUC 0.97) surpassed that achieved with patients' clinical data alone (cross-validation AUC 0.59) or prior studies with single biomarkers. Further, we analyzed novel proteins and identified fetuin-A as a promising candidate for early GDM prediction. A correlation analysis showed a moderate to strong correlation between multiple metabolites and proteins, suggesting a combined protein-metabolic analysis integrated with ML would enable a powerful screening platform for first trimester diagnosis. Our study underscores RS metabolic profiling as a cost-effective tool that can be integrated into the current clinical workflow for accurate risk stratification of GDM and to improve both maternal and neonatal outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。