A simple and efficient strategy for cell-based and cell-free-based therapies in acute liver failure: hUCMSCs bioartificial liver

急性肝衰竭的细胞和非细胞治疗的简单有效策略:hUCMSCs 生物人工肝

阅读:8
作者:Lei Feng, Yi Wang, Yu Fu, Adilijiang Yimamu, Zeyi Guo, Chenjie Zhou, Shao Li, Linya Zhang, Jiasheng Qin, Shusong Liu, Xiaoping Xu, Zesheng Jiang, Shaoru Cai, Jianmin Zhang, Yang Li, Qing Peng, Xiao Yi, Guolin He, Ting Li, Yi Gao

Abstract

Acute liver failure (ALF) is a life-threatening condition. Cell-based and cell-free-based therapies have proven to be effective in treating ALF; however, their clinical application is limited by cell tumorigenicity and extracellular vesicle (EV) isolation in large doses. Here, we explored the effectiveness and mechanism of umbilical cord mesenchymal stem cells (hUCMSCs)-based bioartificial liver (hUCMSC-BAL), which is a simple and efficient strategy for ALF. D-galactosamine-based pig and mouse ALF models were used to explore the effectiveness of hUCMSC-BAL and hUCMSC-sEV therapies. Furthermore, high-throughput sequencing, miRNA transcriptome analysis, and western blot were performed to clarify whether the miR-139-5p/PDE4D axis plays a critical role in the ALF model in vivo and in vitro. hUCMSC-BAL significantly reduced inflammatory responses and cell apoptosis. hUCMSC-sEV significantly improved liver function in ALF mice and enhanced the regeneration of liver cells. Furthermore, hUCMSC-sEV miRNA transcriptome analysis showed that miR-139-5p had the highest expression and that PDE4D was one of its main target genes. The sEV miR-139-5p/PDE4D axis played a role in the treatment of ALF by inhibiting cell apoptosis. Our data indicate that hUCMSC-BAL can inhibit cytokine storms and cell apoptosis through the sEV miR-139-5p/PDE4D axis. Therefore, we propose hUCMSC-BAL as a therapeutic strategy for patients with early ALF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。