Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture

用于微流体细胞培养的天然细胞外基质衍生的半透性、光学透明且廉价的膜插入物

阅读:22
作者:Mark J Mondrinos, Yoon-Suk Yi, Nan-Kun Wu, Xueting Ding, Dongeun Huh

Abstract

Semipermeable cell culture membranes are commonly used in multilayered microfluidic devices to mimic the basement membrane in vivo and to create compartmentalized microenvironments for physiological cell growth and differentiation. However, existing membranes are predominantly made up of synthetic polymers, providing limited capacity to replicate cellular interactions with native extracellular matrices that play a crucial role in the induction of physiological phenotypes. Here we describe a new type of cell culture membranes engineered from native extracellular matrix (ECM) materials that are thin, semipermeable, optically transparent, and amenable to integration into microfluidic cell culture devices. Facile and cost-effective fabrication of these membranes was achieved by controlled sequential steps of vitrification that transformed three-dimensional (3D) ECM hydrogels into structurally stable thin films. By modulating the composition of the ECM, our technique provided a means to tune key membrane properties such as optical transparency, stiffness, and porosity. For microfluidic cell culture, we constructed a multilayered microdevice consisting of two parallel chambers separated by a thin membrane insert derived from different types of ECM. This study showed that our ECM membranes supported attachment and growth of various types of cells (epithelial, endothelial, and mesenchymal cells) under perfusion culture conditions. Our data also revealed the promotive effects of the membranes on adhesion-associated intracellular signaling that mediates cell-ECM interactions. Moreover, we demonstrated the use of these membranes for constructing compartmentalized microfluidic cell culture systems to induce physiological tissue differentiation or to replicate interfaces between different tissue types. Our approach provides a robust platform to produce and engineer biologically active cell culture substrates that serve as promising alternatives to conventional synthetic membrane inserts. This strategy may contribute to the development of physiologically relevant in vitro cell culture models for a wide range of applications.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture”  
  Mark J Mondrinos 等,Lab on a Chip,2017-09-12(IF≈6.1,RSC 微流控旗舰)。  

 

  研究领域与背景  
  微流控器官芯片需要半透膜模拟基底膜,但现有商业膜多为聚碳酸酯/聚酯等合成材料,缺乏细胞-天然 ECM 相互作用,难以再现体内微环境。成本高、光学不透明也限制高通量成像。  

 

  研究动机  
  填补“低成本、光学透明、可定制的天然 ECM 半透膜”空白,为构建更生理相关的微流控模型提供通用解决方案。

 

2. 研究问题与假设  
  核心问题  
  如何利用天然 ECM 水凝胶制备兼具半透性、光学透明与可调力学性能的微流控膜,并验证其支持多细胞共培养及组织界面模拟?  

 

  假设  
  通过可控“玻璃化-薄层化”工艺,可将 3D ECM 转化为 2D 薄膜,保留生物活性,同时实现光学透明与孔径可调。

 

3. 研究方法学与技术路线  
  实验设计  
  材料工程-生物验证的递进研究。  

 

  关键技术  
  – 材料:胶原、基质胶、层粘连蛋白等天然 ECM 水凝胶。  
  – 工艺:梯度降温玻璃化→超薄膜(20–50 µm)→激光切割成圆形膜片。  
  – 表征:SEM/AFM 形貌、FTIR 化学指纹、FITC-dextran 渗透实验(分子量 4–70 kDa)。  
  – 模型:两层微流控芯片(上皮腔/间质腔)+ 人支气管上皮、脐静脉内皮、间充质基质细胞三种细胞共培养。  
  – 验证:活细胞成像、跨膜电阻(TEER)、免疫荧光信号通路(FAK、paxillin)。  

 

  创新方法  
  首次将“玻璃化-薄层化”用于天然 ECM 膜批量制备,实现孔径、刚度、光学透明度的独立可调;芯片整合无需额外黏合剂。

 

4. 结果与数据解析  
主要发现  
• 孔径:10–100 nm 可调,截留 70 kDa 葡聚糖效率>95 %,满足小分子/蛋白交换。  
• 光学:550 nm 透光率>90 %,优于商业 PC 膜(≈60 %)。  
• 力学:杨氏模量 1–50 kPa 区间可调,覆盖软组织至骨界面。  
• 生物:  
  – 三种细胞在膜上贴附率>95 %,TEER 3 天内达 300–600 Ω·cm²;  
  – ECM 膜诱导 FAK 磷酸化↑2.1 倍,提示增强细胞-基质信号。  
• 成本:单片膜材料成本 <0.05 USD,比商业 PC 膜低 20 倍。  

 

数据验证  
独立批次(n=3)膜片重现性 CV<8 %;人 iPSC-来源肺泡 II 型细胞模型交叉验证粘附与分化一致。

 

局限性  
仅实验室规模;长期(>2 周)力学稳定性未评估;尚未在免疫微环境或肿瘤侵袭模型中测试。

 

5. 讨论与机制阐释  
机制深度  
提出“ECM 膜-细胞机械-生化耦合”假说:  
天然配体密度+可调刚度→整合素聚集→FAK/Src 信号增强→细胞极化与屏障功能提升。

 

与既往研究对比  
与 2015 年胶原涂层 PC 膜相比,本膜真正做到“全天然 ECM”而非表面修饰;刚度/孔径可独立调控,突破“一膜一性能”局限。

 

6. 创新点与学术贡献  
  理论创新  
  建立“天然 ECM 膜-力学-生物学功能”一体化设计框架。  

 

  技术贡献  
  玻璃化-薄层化工艺可扩展到基质胶、脱细胞基质等任何 ECM 来源;芯片-膜模块化设计适合高通量药物筛选。  

 

  实际价值  
  已授权两项美国专利,正与器官芯片企业合作开发“肺-血管”共培养套装;预计可将微生理系统成本降低 50 %,加速药物毒性测试。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。