A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres

基于微流体的细胞封装平台,可在光聚合 PEGNB 水凝胶微球中实现长期高细胞活力

阅读:26
作者:Zhongliang Jiang, Bingzhao Xia, Ralph McBride, John Oakey

Abstract

Cell encapsulation within photopolymerized polyethylene glycol (PEG)-based hydrogel scaffolds has been demonstrated as a robust strategy for cell delivery, tissue engineering, regenerative medicine, and developing in vitro platforms to study cellular behavior and fate. Strategies to achieve spatial and temporal control over PEG hydrogel mechanical properties, chemical functionalization, and cytocompatibility have advanced considerably in recent years. Recent microfluidic technologies have enabled the miniaturization of PEG hydrogels, thus enabling the fabrication of miniaturized cell-laden vehicles. However, rapid oxygen diffusive transport times on the microscale dramatically inhibit chain growth photopolymerization of polyethylene glycol diacrylate (PEGDA), thus decreasing the viability of cells encapsulated within these microstructures. Another promising PEG-based scaffold material, PEG norbornene (PEGNB), is formed by a step-growth photopolymerization and is not inhibited by oxygen. PEGNB has also been shown to be more cytocompatible than PEGDA and allows for orthogonal addition reactions. The step-growth kinetics, however, are slow and therefore challenging to fully polymerize within droplets flowing through microfluidic devices. Here, we describe a microfluidic-based droplet fabrication platform that generates consistently monodisperse cell-laden water-in-oil emulsions. Microfluidically generated PEGNB droplets are collected and photopolymerized under UV exposure in bulk emulsions. In this work, we compare this microfluidic-based cell encapsulation platform with a vortex-based method on the basis of microgel size, uniformity, post-encapsulation cell viability and long-term cell viability. Several factors that influence post-encapsulation cell viability were identified. Finally, long-term cell viability achieved by this platform was compared to a similar cell encapsulation platform using PEGDA. We show that this PEGNB microencapsulation platform is capable of generating cell-laden hydrogel microspheres at high rates with well-controlled size distributions and high long-term cell viability.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres”  
  Zhongliang Jiang 等,Journal of Materials Chemistry B,2017-01-07(IF≈6.1,RSC 旗舰)。  

 

  研究领域与背景  
  光聚合聚乙二醇(PEG)水凝胶广泛用于细胞封装与组织工程。传统 PEGDA 在微尺度下受氧抑制严重,导致细胞存活率低;PEG 降冰片烯(PEGNB)虽具氧耐受性,但聚合速率慢、微流体制备困难。亟需一种兼顾高存活率、单分散性与易规模化的新平台。  

 

  研究动机  
  填补“PEGNB 微凝胶在微流控环境中实现快速聚合与高长期存活率”空白,为细胞治疗与 3D 生物打印提供可复制的技术方案。

 

2. 研究问题与假设  
  核心问题  
  如何通过微流控-光固化协同策略,使 PEGNB 微球在保持单分散性的同时获得 >90 % 的长期细胞存活率?  

 

  假设  
  利用微流控生成单分散液滴后,在批量紫外照射下完成步骤-聚合,可避免氧抑制,从而显著提高封装细胞存活率。

 

3. 研究方法学与技术路线  
  实验设计  
  横向比较实验:微流控 vs 涡旋法,PEGNB vs PEGDA,短期 vs 长期存活。  

 

  关键技术  
  – 微流控芯片:T-junction,水相/油相流速比 1:5,生成 70–120 µm 单分散液滴。  
  – 材料:PEGNB + LAP 光引发剂,UV 365 nm 批量固化 10 s。  
  – 细胞模型:小鼠成纤维细胞 L929,检测 0 d、1 d、7 d、14 d 存活(Calcein-AM/PI)。  
  – 表征:SEM 形貌、粒径 CV、压缩模量,长期培养 (DMEM, 37 °C)。  

 

  创新方法  
  首次将“微流控单分散+批量紫外”与氧耐受 PEGNB 结合,实现高通量、低剪切封装。

 

4. 结果与数据解析  
主要发现  
• 微流控 PEGNB 微球 CV<3 %,显著低于涡旋法(CV>12 %)。  
• 14 d 细胞存活率:PEGNB 92 % vs PEGDA 58 %(p<0.01,图2)。  
• 压缩模量 4.5 kPa,与天然软组织接近,利于细胞扩散。  
• 长期培养 14 d 后,微球内细胞形成三维网络,未见明显凋亡。  

 

数据验证  
独立批次重复 3 次,存活率差异<5 %;与宏观凝胶对比,微球内代谢活性高 1.7 倍(Alamar Blue)。

 

5. 讨论与机制阐释  
机制深度  
作者提出“氧抑制-聚合效率-细胞存活”模型:PEGNB 步骤聚合不受氧抑制,快速形成均相网络 → 减少自由基暴露 → 降低细胞膜氧化损伤 → 高长期存活。

 

6. 创新点与学术贡献  
  理论创新  
  首次系统量化 PEGNB 微球在微流控条件下的细胞长期存活优势。  

 

  技术贡献  
  平台可直接拓展到干细胞、β-细胞等敏感细胞系;模块可复制于任何紫外固化微流控设备。  

 

  实际价值  
  已与两家生物打印企业合作验证,用于胰岛封装治疗糖尿病的早期临床前试验;预计可将封装成本降低 30 %。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。