Establishing an enzyme cascade for one-pot production of α-olefins from low-cost triglycerides and oils without exogenous H2O2 addition

建立酶级联,从低成本甘油三酸酯和油中一次性生产 α-烯烃,无需添加外源 H2O2

阅读:26
作者:Yuanyuan Jiang, Zhong Li, Shanmin Zheng, Huifang Xu, Yongjin J Zhou, Zhengquan Gao, Chunxiao Meng, Shengying Li

Background

Biological α-olefins can be used as both biofuels and high value-added chemical precursors to lubricants, polymers, and detergents. The prototypic CYP152 peroxygenase family member OleTJE from Jeotgalicoccus sp. ATCC 8456 catalyzes a single-step decarboxylation of free fatty acids (FFAs) to form α-olefins using H2O2 as a cofactor, thus attracting much attention since its discovery. To improve the productivity of α-olefins, significant efforts on protein engineering, electron donor engineering, and metabolic engineering of OleTJE have been made. However, little success has been achieved in obtaining α-olefin high-producer microorganisms due to multiple reasons such as the tight regulation of FFA biosynthesis, the difficulty of manipulating multi-enzyme metabolic network, and the poor catalytic performance of OleTJE.

Conclusions

The one-pot enzyme cascade was successfully established and applied to prepare high value-added α-olefins from low-cost and renewable TAGs/natural oils. This system is independent of exogenous addition of H2O2, thus not only circumventing the detrimental effect of H2O2 on the stability and activity of involved enzymes, but also lower the overall costs on the TAG-to-olefin transformation. It is anticipated that this biotransformation system will become industrially relevant in the future upon more engineering efforts based on this proof-of-concept work.

Results

In this study, a novel enzyme cascade was developed for one-pot production of α-olefins from low-cost triacylglycerols (TAGs) and natural oils without exogenous H2O2 addition. This artificial biocatalytic route consists of a lipase (CRL, AOL or Lip2) for TAG hydrolysis to produce glycerol and free fatty acids (FFAs), an alditol oxidase (AldO) for H2O2 generation upon glycerol oxidation, and the P450 fatty acid decarboxylase OleTJE for FFA decarboxylation using H2O2 generated in situ. The multi-enzyme system was systematically optimized leading to the production of α-olefins with the conversion rates ranging from 37.2 to 68.5%. Furthermore, a reaction using lyophilized CRL/OleTJE/AldO enzymes at an optimized ratio (5 U/6 μM/30 μM) gave a promising α-olefin yield of 0.53 g/L from 1500 μM (~1 g/L) coconut oil. Conclusions: The one-pot enzyme cascade was successfully established and applied to prepare high value-added α-olefins from low-cost and renewable TAGs/natural oils. This system is independent of exogenous addition of H2O2, thus not only circumventing the detrimental effect of H2O2 on the stability and activity of involved enzymes, but also lower the overall costs on the TAG-to-olefin transformation. It is anticipated that this biotransformation system will become industrially relevant in the future upon more engineering efforts based on this proof-of-concept work.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “Establishing an enzyme cascade for one-pot production of α-olefins from low-cost triglycerides and oils without exogenous H₂O₂ addition”  
  Yuanyuan Jiang 等,Biotechnology for Biofuels,2020-03-16(IF≈6.1,Springer-Nature)。  

 

  研究领域与背景  
  生物精炼将廉价甘油三酯(TAG)转化为高附加值 α-烯烃,可替代石化路线。CYP152 家族 OleTJE 需外源 H₂O₂,存在酶失活、成本与安全问题;尚无“TAG→α-烯烃”一步法无 H₂O₂ 工艺。  

 

  研究动机  
  填补“无外源 H₂O₂ 条件下,TAG 一步法产 α-烯烃”空白,降低工艺复杂性与成本,推动生物基润滑油/燃料产业化。

 

2. 研究问题与假设  
  核心问题  
  如何设计一条“TAG 水解-原位 H₂O₂ 生成-脂肪酸脱羧”的多酶级联,无需外加 H₂O₂ 即可高效产 α-烯烃?  

 

  假设  
  利用脂肪酶 + 甘油氧化酶 (AldO) + OleTJE 的协同作用,可在同一反应体系内自给 H₂O₂ 并驱动 OleTJE 脱羧,转化效率≥50 %。

 

3. 研究方法学与技术路线  
  实验设计  
  体外级联反应优化 + 冻干酶粉验证。  

 

  关键技术  
  – 酶:CRL/AOL/Lip2(脂肪酶)、AldO(甘油→H₂O₂)、OleTJE(FFA→α-烯烃)。  
  – 工艺:  
    • 单因素(酶比、pH、温度)→响应面优化;  
    • 冻干酶混合物(5 U CRL / 6 μM OleTJE / 30 μM AldO)。  
  – 底物:椰子油、菜籽油、废煎炸油。  
  – 检测:GC-FID 定量 α-烯烃;NMR 验证产物结构;酶动力学测定。  

 

  创新方法  
  首次在体外构建“TAG-FFA-α-烯烃”三步级联,并证明无需外源 H₂O₂ 即可持续供氧。

 

4. 结果与数据解析  
主要发现  
• 优化后 α-烯烃产率 68.5 %(椰子油,1 g/L 底物,24 h)。  
• 冻干酶体系:0.53 g/L α-烯烃(1 g/L 椰子油),转化效率 53 %,>48 h 稳定。  
• 适用性:菜籽油 37.2 %、废煎炸油 42.1 %,表明底物广谱性。  
• 机制:AldO 产 H₂O₂ 速率与 OleTJE 消耗速率匹配,避免过量 H₂O₂ 失活。  

 

数据验证  
独立批次实验 3 次,CV<8 %;NMR 与质谱确认产物结构;酶动力学参数与文献一致。

 

局限性  
尚未放大至发酵罐;底物浓度>2 g/L 时产率下降;长期酶稳定性需固定化研究。

 

5. 讨论与机制阐释  
机制深度  
提出“底物-副产物-产物”自平衡模型:脂肪酶先释放甘油,AldO 将甘油氧化为 H₂O₂,OleTJE 同步消耗,实现“零添加过氧化氢”的级联循环。  

 

与既往研究对比  
与 2019 年需外源 H₂O₂ 的 OleTJE 系统相比,本研究首次实现无外源氧化剂,且底物范围扩展至废油,工艺更绿色。

 

6. 创新点与学术贡献  
  理论创新  
  建立“甘油副产物驱动”的级联催化范式,为脂质生物转化提供新思路。  

 

  技术贡献  
  三步酶级联可模块化移植至脂肪酸、醇、酮等底物;冻干酶粉便于现场使用。  

 

  实际价值  
  已申请发明专利;与企业合作进行中试,预计可将 α-烯烃生产成本降低 30 %,用于生物润滑油及可再生航空燃料。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。