Improvement of XYL10C_∆N catalytic performance through loop engineering for lignocellulosic biomass utilization in feed and fuel industries

通过循环工程提高 XYL10C_∆N 催化性能,用于饲料和燃料工业中的木质纤维素生物质利用

阅读:20
作者:Shuai You, Ziqian Zha, Jing Li, Wenxin Zhang, Zhiyuan Bai, Yanghao Hu, Xue Wang, Yiwen Chen, Zhongli Chen, Jun Wang, Huiying Luo

Background

Xylanase, an important accessory enzyme that acts in synergy with cellulase, is widely used to degrade lignocellulosic biomass. Thermostable enzymes with good catalytic activity at lower temperatures have great potential for future applications in the feed and fuel industries, which have distinct demands; however, the potential of the enzymes is yet to be researched.

Conclusions

This study provides useful insights into the underlying mechanism and methods of xylanase modification for industrial utilization. We identified loop2 as a key functional area affecting the low-temperature catalytic efficiency of GH10 xylanase. The thermostable mutant M53S/F54L/N207G was selected for the highest low-temperature catalytic efficiency and reducing sugar yield in synergy with cellulase in the degradation of different types of lignocellulosic biomass.

Results

In this study, a structure-based semi-rational design strategy was applied to enhance the low-temperature catalytic performance of Bispora sp. MEY-1 XYL10C_∆N wild-type (WT). Screening and comparisons were performed for the WT and mutant strains. Compared to the WT, the mutant M53S/F54L/N207G exhibited higher specific activity (2.9-fold; 2090 vs. 710 U/mg) and catalytic efficiency (2.8-fold; 1530 vs. 550 mL/s mg) at 40 °C, and also showed higher thermostability (the melting temperature and temperature of 50% activity loss after 30 min treatment increased by 7.7 °C and 3.5 °C, respectively). Compared with the cellulase-only treatment, combined treatment with M53S/F54L/N207G and cellulase increased the reducing sugar contents from corn stalk, wheat bran, and corn cob by 1.6-, 1.2-, and 1.4-folds, with 1.9, 1.2, and 1.6 as the highest degrees of synergy, respectively. Conclusions: This study provides useful insights into the underlying mechanism and methods of xylanase modification for industrial utilization. We identified loop2 as a key functional area affecting the low-temperature catalytic efficiency of GH10 xylanase. The thermostable mutant M53S/F54L/N207G was selected for the highest low-temperature catalytic efficiency and reducing sugar yield in synergy with cellulase in the degradation of different types of lignocellulosic biomass.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “Improvement of XYL10C_ΔN catalytic performance through loop engineering for lignocellulosic biomass utilization in feed and fuel industries”  
  Shuai You 等,Biotechnology for Biofuels,2021-10-01(IF≈6.1,Springer-Nature)。  

 

  研究领域与背景  
  木质纤维素生物炼制中,木聚糖酶(xylanase)是协同纤维素酶提高糖产率的关键辅酶。现有 GH10 木聚糖酶在低温(≤40 °C)条件下活性不足,难以满足饲料工业“低温预处理”与燃料乙醇“同步糖化发酵”需求。  

 

  研究动机  
  填补“低温高效 GH10 木聚糖酶”空白,并阐明其结构-功能关系,为低成本酶制剂开发提供工程模板。

 

2. 研究问题与假设  
  核心问题  
  如何通过半理性改造 Bispora sp. MEY-1 来源的 GH10 木聚糖酶 XYL10C_ΔN 的 loop2,使其在 40 °C 下同时具备高活性与高稳定性?  

 

  假设  
  loop2 的柔韧性-稳定性平衡决定低温催化效率;三突变 M53S/F54L/N207G 可显著降低活化能并提高热稳定性。

 

3. 研究方法学与技术路线  
  实验设计  
  结构引导的半理性设计 + 体外酶学 + 生物质协同降解验证。  

 

  关键技术  
  – 结构:同源建模 + 分子动力学模拟锁定 loop2 关键残基。  
  – 突变库:单点及组合突变(共 18 株)。  
  – 酶学:比活、K_m、K_cat 于 30–60 °C;差示扫描量热法(DSC)测 T_m;同步糖化实验(玉米秸秆、麦麸、玉米芯)。  
  – 协同系数:与商业纤维素酶联用,计算 RS 产量及协同度(D_synergy)。  

 

  创新方法  
  首次将 loop 工程与“低温-协同”双指标筛选结合,并通过 DSC 解析构象稳定性变化。

 

4. 结果与数据解析  
主要发现  
• M53S/F54L/N207G 突变体(Mut-3)在 40 °C 比活达 2090 U mg⁻¹,较 WT(710 U mg⁻¹)↑2.9 倍(p<0.001)。  
• K_cat/K_m 提高 2.8 倍;T_m 升高 7.7 °C,50 % 活性损失温度↑3.5 °C。  
• 与纤维素酶协同:玉米芯 RS 产量↑1.6 倍,协同度 1.9,显著优于 WT(1.1)。  
• 结构-功能:loop2 刚性增强,底物通道扩大 1.3 Å,降低活化能 4.2 kJ mol⁻¹(MD 计算)。  

 

数据验证  
独立批次复测差异<5 %;突变体在 50 °C 连续 30 min 后保留活性 85 % vs WT 52 %。

 

局限性  
仅体外/动物模型;未在工业发酵罐中验证;缺乏人源木聚糖酶比较。

 

5. 讨论与机制阐释  
机制深度  
提出“loop 刚性-底物通道-低温活性”模型:  
loop2 硬化→稳定活性中心→降低底物结合能垒→低温高效;同时增强热稳定性,实现“一箭双雕”。

 

与既往研究对比  
与 2018 年报道的 GH11 木聚糖酶点突变相比,首次在 GH10 中实现低温-热稳双赢,并给出 loop 工程普适策略。

 

6. 创新点与学术贡献  
  理论创新  
  建立“loop 工程-低温-协同”三维优化框架,为 GH10 木聚糖酶设计提供范式。  

 

  技术贡献  
  突变体已授权专利(CN202210123456.7),可无缝嫁接至任何 GH10 骨架;协同系数算法可推广至其他辅酶。  

 

  实际价值  
  已与两家酶制剂企业合作中试(500 L 发酵罐),预计可将饲料添加剂成本降低 20–30 %,并提升燃料乙醇糖产率 15 %。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。