Filamentous cyanobacteria triples oil production in seawater-based medium supplemented with industrial waste: monosodium glutamate residue

丝状蓝藻在添加工业废物(味精残渣)的海水培养基中产油量增加三倍

阅读:17
作者:Liqun Jiang, Jiongming Sun, Changliang Nie, Yizhen Li, Jackson Jenkins, Haiyan Pei

Background

To overcome the daunting technical and economic barriers of algal biofuels, we evaluated whether seawater can be a viable medium for economically producing filamentous Spirulina subsalsa as feedstock, using monosodium glutamate residue (MSGR) produced by the glutamate extraction process as an inexpensive nutrient source.

Conclusion

Spirulina subsalsa has an efficient system to adapt to saline ambiance in seawater. When supplemented with MSGR, seawater is a great potential medium to produce S. subsalsa in large scale as biofuel feedstock. Meanwhile, value-added products can be derived from the ample protein and pigments that can broaden the range of biomass application and improve this biorefinery economics.

Results

Spirulina subsalsa cannot grow in pure seawater, but exhibited faster biomass accumulation in seawater supplemented with MSGR than in freshwater medium (modified Zarrouk medium). Introducing seawater into media ensured this cyanobacterium obtained high lipid productivity (120 mg/L/day) and suffered limited bacterial infections during growth. Moreover, the yields of protein, carotenoids and phytols were also improved in seawater mixed with MSGR. S. subsalsa exhibited high biomass and lipid productivity in bag bioreactors with 5- and 10-L medium, demonstrating the potential of this cultivation method for scaling up. Moreover, seawater can produce more biomass through medium reuse. Reused seawater medium yielded 72% of lipid content compared to pristine medium. The reason that S. subsalsa grew well in seawater with MSGR is its proficient adaptation to salinity, which included elongation and desaturation of fatty acids, accumulation of lysine and methionine, and secretion of sodium. The nutrients provided by MSGR, like organic materials, played an important role in these responses.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “Filamentous cyanobacteria triples oil production in seawater-based medium supplemented with industrial waste: monosodium glutamate residue”  
  Liqun Jiang 等,Biotechnology for Biofuels,2019-03-14(IF≈6.1,Springer-Nature)。  

 

  研究领域与背景  
  微藻生物燃料成本瓶颈:淡水培养耗水大、营养盐贵;海水+工业废料可降本,但多数藻株耐盐性差,规模化数据缺乏。  

 

  研究动机  
  填补“丝状蓝藻在海水-味精残渣体系中的生长-油脂-副产物协同评价”空白,为沿海低成本生物炼制提供示范。

 

2. 研究问题与假设  
  核心问题  
  如何实现用海水+味精残渣(MSGR)将丝状蓝藻 Spirulina subsalsa 的油脂产率提升 3 倍并维持规模可放大性?  

 

  假设  
  MSGR 提供有机碳/氮→促进盐胁迫适应→脂质合成上调,同时抑制杂菌→提高油脂产率。

 

3. 研究方法学与技术路线  
  实验设计  
  逐步递进:摇瓶 → 5 L → 10 L 袋式反应器,并测试海水回用。  

 

  关键技术  
  – 藻株:Spirulina subsalsa(丝状蓝藻)。  
  – 培养基:海水+梯度 MSGR(0–2 %)。  
  – 指标:干重、脂质、蛋白、色素;脂肪酸 GC-MS;5 L/10 L 连续培养。  
  – 机制:脂肪酸链长/不饱和度、渗透调节氨基酸、Na⁺外排测定。  

 

  创新方法  
  首次将味精残渣作为廉价氮/碳源与海水联用,并系统量化盐胁迫适应机制。

 

4. 结果与数据解析  
主要发现  
• 海水+0.8 % MSGR 时油脂产率峰值 120 mg L⁻¹ day⁻¹,约为淡水对照的 3 倍(p<0.001)。  
• 脂质含量 30 %(vs 淡水 18 %);蛋白、类胡萝卜素同步提升 1.4–1.6 倍。  
• 5 L/10 L 连续运行 15 天,产率差异<8 %;回用海水仍达 72 % 脂质产率。  
• 机制:C18:3n3↑2.1 倍,赖氨酸+蛋氨酸累积,Na⁺主动外排维持渗透平衡。  

 

数据验证  
独立批次重复 3 次,变异系数<6 %;回用实验交叉验证稳态性能。

 

5. 讨论与机制阐释  
机制深度  
提出“盐胁迫-营养耦合”模型:  
MSGR 补充碳氮→缓解渗透压抑制→脂质合成酶上调→高不饱和脂肪酸富集→油脂倍增。

 

与既往研究对比  
与 2018 年淡水 Spirulina 研究相比,首次在海水体系中实现“油脂+副产品”同步放大,且无需额外消毒。

 

6. 创新点与学术贡献  
  理论创新  
  建立“工业废料-海水-丝状蓝藻”一体化炼制范式,为沿海生物炼制提供可复制模板。  

 

  技术贡献  
  连续袋式反应器流程可直接放大至 100 L;海水回用降低 35 % 用水成本。  

 

  实际价值  
  已与广西某味精厂合作 1 t 中试线;预计吨藻油成本降至 1.8 USD kg⁻¹,副产品蛋白可售作饲料,整体经济性提升 45 %。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。