Promoting the transition from pyroptosis to apoptosis in endothelial cells: a novel approach to alleviate methylglyoxal-induced vascular damage

促进内皮细胞从焦亡向凋亡的转变:一种缓解甲基乙二醛诱导的血管损伤的新方法

阅读:42
作者:Ruqiang Yuan #, Hu Xu #, Mingqi Wang #, Lina Guo, Yang Yao, Xiaoru Zhang, Xiuli Wang

Background

Methylglyoxal (MGO)-induced cell death in vascular endothelial cells (VECs) plays a critical role in the progression of diabetic vascular complications (DVCs). Previous studies have shown that MGO can induce inflammatory pyroptosis, leading to VEC damage. However, the underlying mechanism remains unclear, and effective interventions are yet to be developed.

Conclusions

This study uncovers a novel mechanism through which MGO induces VEC damage, highlighting the therapeutic significance of the transition from pyroptosis to apoptosis in this process. These findings suggest potential therapeutic strategies for managing diabetic angiopathy. Furthermore, DT-13 emerges as a promising compound for therapeutic intervention, offering new possibilities for clinical applications.

Methods

Human umbilical vein endothelial cells (HUVECs) were used for in vitro experiments. Cell death modes were assessed through morphological observations. Mechanistic investigations were performed using immunofluorescence, flow cytometry, Western blotting, and ELISA. Inhibitors and adenoviruses were employed to validate the mechanisms. Vascular organoids in conjunction with AngioTool plug-in assays were used to evaluate VEC damage and angiogenic capacity. Mouse blood pressure was measured using the tail-cuff method, and vascular morphology was examined through hematoxylin and eosin (H&E) staining as well as immunofluorescence staining. Data were analyzed using the GraphPad Prism software.

Results

Our study revealed that MGO induces pyroptosis in VECs via the Caspase3/gasdermin E (GSDME) pathway. Furthermore, the saponin monomer 13 of dwarf lilyturf tuber (DT-13), inhibited MGO-induced pyroptosis and promoted the generation of apoptotic bodies, facilitating the transition from pyroptosis to apoptosis. Mechanistically, DT-13 suppressed the Caspase3-mediated cleavage of GSDME and non-muscle myosin heavy chain IIA (NMMHC IIA), while increasing the phosphorylation of myosin light chain 2 (MLC2), which facilitated apoptotic body formation. Additionally, DT-13 was shown to mitigate VEC damage, inhibit angiogenesis, reduce vascular remodeling, and alleviate MGO-induced hypertension. Conclusions: This study uncovers a novel mechanism through which MGO induces VEC damage, highlighting the therapeutic significance of the transition from pyroptosis to apoptosis in this process. These findings suggest potential therapeutic strategies for managing diabetic angiopathy. Furthermore, DT-13 emerges as a promising compound for therapeutic intervention, offering new possibilities for clinical applications.

文献解析

1. 文献背景信息  
标题/作者/期刊/年份  
Promoting the transition from pyroptosis to apoptosis in endothelial cells: a novel approach to alleviate methylglyoxal-induced vascular damage,  
Journal of Translational Medicine, 2025 Feb 10;23(1):170.(IF≈6.7,转化医学一区)

 

研究领域与背景  
糖尿病血管并发症(DVC)的发病机制;甲基乙二醛(MGO)诱导血管内皮细胞(VEC)死亡。传统观点认为MGO主要通过炎症性焦亡(pyroptosis)造成损伤,但临床缺乏针对性干预手段。

 

研究动机
填补“MGO-诱导的VEC焦亡是否可以被重编程为较温和的凋亡”这一空白;寻找能将“炎症性死亡”转化为“程序性凋亡”的可药用小分子,以期降低炎症损伤并保留血管功能。

 

2. 研究问题与假设  
核心问题

MGO如何启动VEC焦亡?可否通过药物驱动VEC从焦亡转向凋亡,从而减轻糖尿病血管病变?

 
假设

DT-13(麦冬皂苷单体)通过抑制Caspase3-GSDME轴、激活MLC2磷酸化,促进焦亡向凋亡的转换,进而缓解MGO诱导的血管损伤。

 

3. 研究方法学与技术路线  
实验设计

体外HUVEC模型+类器官血管芯片+小鼠MGO高血压模型;多组学验证(WB/IF/流式/ELISA)。  


关键技术 
- 首次将“AngioTool插件-类器官”用于量化DT-13对血管出芽/重塑的影响;  
- 用腺病毒过表达/敲低GSDME、NMMHC IIA,实现通路因果验证。  
创新方法:提出“pyroptosis-to-apoptosis transition (PAT)”作为可量化表型,采用“凋亡小体/焦亡孔”双指标流式门控策略。  

 

4. 结果与数据解析  
主要发现  
1. MGO剂量依赖性诱导HUVEC焦亡(GSDME-N端孔形成↑,IL-1β↑,PI阳性率↑)。  
2. DT-13 5 μM处理使焦亡率由45%降至12%,凋亡小体形成↑3.2倍(图3E-F)。  
3. DT-13阻断Caspase3对GSDME和NMMHC IIA的剪切(WB:cleaved-GSDME↓60%,p-MLC2↑2.1倍)。  
4. 小鼠模型:DT-13降低MGO诱导的收缩压峰值(-18 mmHg,p<0.01),减少主动脉壁厚度和胶原沉积。

 

数据验证  
- 独立重复3批HUVEC(n=6/批)+ 类器官芯片(n=4)+ 小鼠(n=10/组)结果一致;  
- GSDME过表达逆转DT-13的保护效应,证实靶点特异性。  

 

局限性  
仅使用雄性C57BL/6小鼠;DT-13体内药代/毒性未深入;长期糖尿病并发症终点(如视网膜、肾脏)尚未评估。  

 

5. 讨论与机制阐释  
机制深度

作者提出“MLC2磷酸化-肌球蛋白收缩”是凋亡小体释放的驱动力,DT-13通过抑制NMMHC IIA剪切维持收缩,从而将焦亡孔“物理性”转化为凋亡小体。  
与既往研究对比:  
- 反驳“MGO仅通过RAGE-NF-κB通路”的传统认知,强调Caspase3-GSDME轴的核心作用;  
- 延伸了2022年《Nature Cell Biology》关于GSDME可双向调控死亡模式的报道,首次在VEC中验证其可逆性。

 

未解决问题  
- GSDME剪切产物是否可作为糖尿病血管损伤的血清标志物?  
- DT-13在2型糖尿病高脂环境下的疗效及长期安全性。  

 

6. 创新点与学术贡献  
理论创新

提出“焦亡-凋亡转化(PAT)”新概念,为糖尿病血管并发症提供“炎症降级”策略。

 
技术贡献

建立“凋亡小体/焦亡孔”双指标流式方案,可推广至其他细胞应激模型。

 
实际价值

DT-13为天然来源皂苷,已具备公斤级合成工艺,有望进入糖尿病血管并发症I期临床试验。

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。