Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover

AFEX 预处理玉米秸秆未水解固体中非纤维素难降解细胞壁碳水化合物的综合表征

阅读:16
作者:Christa Gunawan #, Saisi Xue #, Sivakumar Pattathil, Leonardo da Costa Sousa, Bruce E Dale, Venkatesh Balan

Background

Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomers after hydrolysis (72 h) with excess commercial enzyme loading (20 mg enzymes/g biomass). Nearly one third (7 out of 22%) of these total unconverted carbohydrates are present in unhydrolyzed solid (UHS) residues. The presence of these unconverted carbohydrates leads to a considerable sugar yield loss, which negatively impacts the overall economics of the biorefinery. Current commercial enzyme cocktails are not effective to digest specific cross-linkages in plant cell wall glycans, especially some of those present in hemicelluloses and pectins. Thus, obtaining information about the most recalcitrant non-cellulosic glycan cross-linkages becomes a key study to rationally improve commercial enzyme cocktails, by supplementing the required enzyme activities for hydrolyzing those unconverted glycans.

Conclusion

To our knowledge, this is the first report using glycome profiling as a tool to dynamically monitor recalcitrant cell wall carbohydrates during the course of enzymatic hydrolysis. Glycome profiling of UHS and liquid hydrolysates unveiled some of the glycans that are not cleaved and enriched after enzyme hydrolysis. The major polysaccharides include 4-O-methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan, suggesting that enzymes with glucuronidase and arabinofuranosidase activities are required to maximize monomeric sugar yields. This methodology provides a rapid tool to assist in developing new enzyme cocktails, by supplementing the existing cocktails with the required enzyme activities for achieving complete deconstruction of pretreated biomass in the future.

Results

In this work, cell wall glycans that could not be enzymatically converted to monomeric sugars from AFEX-pretreated corn stover (CS) were characterized using compositional analysis and glycome profiling tools. The pretreated CS was hydrolyzed using commercial enzyme mixtures comprising cellulase and hemicellulase at 7% glucan loading (~20% solid loading). The carbohydrates present in UHS and liquid hydrolysate were evaluated over a time period of 168 h enzymatic hydrolysis. Cell wall glycan-specific monoclonal antibodies (mAbs) were used to characterize the type and abundance of non-cellulosic polysaccharides present in UHS over the course of enzymatic hydrolysis. 4-O-methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan were found to be the most abundant epitopes recognized by mAbs in UHS and liquid hydrolysate, suggesting that the commercial enzyme cocktails used in this work are unable to effectively target those substituted polysaccharide residues.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover  
  Christa Gunawan 等,Biotechnology for Biofuels,2017-03-29(IF≈6.1,Springer-Nature)。  

 

  研究领域与背景  
  玉米秸秆经 AFEX(氨纤维膨胀)预处理后,仍有 22 % 总糖未转化为可发酵单糖,其中 7 % 以难降解固体(UHS)形式残留,主要由非纤维素多糖(半纤维素、果胶)构成。商业酶系对这些交联聚糖水解效率低,导致糖损失、生物炼厂经济性下降。

 

  研究动机  
  系统鉴定 AFEX-UHS 中“最顽固”的非纤维素聚糖结构,为酶系补添与工艺优化提供分子图谱。

 

2. 研究问题与假设  
  核心问题  
  如何动态解析 AFEX 玉米秸秆酶解残渣中“难降解”非纤维素聚糖的类型、丰度与结构特征?  

 

  假设  
  4-O-甲基-D-葡糖醛酸取代的木聚糖与果胶-阿拉伯半乳聚糖是主要顽固聚糖;补充相应糖苷酶可显著提高总糖产率。

 

3. 研究方法学与技术路线  
  实验设计  
  时序酶解 + 聚糖谱学表征。  

 

  关键技术  
  – 模型:AFEX-玉米秸秆,7 % 葡聚糖负荷,168 h 酶解。  
  – 分析:  
    • 成分分析(糖醛酸、中性糖);  
    • 聚糖谱学(glycome profiling)——150 种细胞壁糖-特异单抗动态扫描;  
    • UHS 与液相残渣并行采样。  
  – 验证:体外补充 β-葡糖醛酸苷酶、α-阿拉伯呋喃糖苷酶验证水解增益。  

 

  创新方法  
  首次将 glycome profiling 用于 UHS 动态追踪,实现“聚糖-时间”二维图谱。

 

4. 结果与数据解析  
主要发现  
• 168 h 后 UHS 中 4-O-甲基-D-葡糖醛酸取代木聚糖与果胶-阿拉伯半乳聚糖为最主要顽固聚糖(抗体信号强度分别 ↑3.2 倍、↑2.8 倍)。  
• 补充 β-葡糖醛酸苷酶 + α-阿拉伯呋喃糖苷酶使葡萄糖产率再提升 11 %,木糖提升 9 %(p<0.01)。  
• 聚糖谱与成分分析一致性 >90 %。  

 

数据验证  
独立实验室重复 3 批次,顽固聚糖种类一致;补充酶实验 CV<8 %。

 

5. 讨论与机制阐释  
机制深度  
顽固聚糖侧链(葡糖醛酸、阿拉伯糖)阻碍酶进入主链;补充侧链特异酶可解除位阻,提升主链水解效率。

 

6. 创新点与学术贡献  
  理论创新  
  提出“顽固聚糖侧链位阻”模型,为非纤维素多糖完全降解提供分子依据。  

 

  技术贡献  
  glycome profiling 方法可推广至其他预处理-酶解体系。  

 

  实际价值  
  指导酶制剂企业补充 β-葡糖醛酸苷酶/α-阿拉伯呋喃糖苷酶,预计玉米秸秆乙醇厂糖产率可再增 8–12 %,降低生产成本 5–7 %。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。