Histone deacetylase 9 modulates the acetylation dynamics of phototropin 1 to fine-tune phototropic responses in plants.

组蛋白去乙酰化酶 9 调节向光素 1 的乙酰化动态,从而微调植物的向光性反应

阅读:6
作者:Liang Minting, Deng Shulin, Zhang Yi, Guo Jingyuan, Lie Zhiyang, Yang Yongyi, Dai Guangyi, Liu Xuncheng
Phototropism is essential for optimizing plant growth and development, with the blue light receptor phototropin 1 (phot1) acting as the primary photoreceptor. Although downstream components of phot1-mediated phototropic signaling have been studied extensively, the upstream regulatory mechanisms that control phot1 activity remain to be clarified. Here, we demonstrate that lysine acetylation dynamically modifies phot1 under both dark and light conditions. Site-directed mutagenesis of acetylated lysines revealed that acetylation regulates the light-induced autophosphorylation and kinase activity of phot1. Genetic screening of histone deacetylase (HDAC) mutants identified HDA9 as a key regulator of phototropism that physically interacts with phot1, modulating its acetylation and phosphorylation levels in response to light. We pinpointed K636 as the critical acetylation site targeted by HDA9, linking deacetylation to phot1 activation. Our findings reveal a regulatory paradigm in which HDA9-mediated deacetylation fine-tunes the phosphorylation dynamics of phot1 to control phototropic responses. This acetylation-phosphorylation crosstalk appears to be evolutionarily conserved, underscoring its broad significance in light signaling. Our study provides insight into the mechanisms by which antagonistic post-translational modifications precisely regulate photoreceptor sensitivity and signal transduction in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。