Background: Herbal medicine represents a rich yet complex source of bioactive compounds, offering both therapeutic potential and toxicological risks. Methods: In this study, we systematically evaluated the biological effects of three traditional herbal extracts-Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii-using Caenorhabditis elegans as an in vivo model. Results: All three extracts significantly reduced worm survival, induced larval arrest, and triggered a high incidence of males (HIM) phenotypes, indicative of mitotic failure and meiotic chromosome missegregation. Detailed analysis of germline architecture revealed extract-specific abnormalities, including nuclear disorganization, ectopic crescent-shaped nuclei, altered meiotic progression, and reduced bivalent formation. These defects were accompanied by activation of the DNA damage response, as evidenced by upregulation of checkpoint genes (atm-1, atl-1), increased pCHK-1 foci, and elevated germline apoptosis. LC-MS profiling identified 21 major compounds across the extracts, with four compounds-thymol, carvyl acetate, luteolin-7-O-rutinoside, and menthyl acetate-shared by all three herbs. Among them, thymol and carvyl acetate significantly upregulated DNA damage checkpoint genes and promoted apoptosis, whereas thymol and luteolin-7-O-rutinoside contributed to antioxidant activity. Notably, S. orientalis and E. biebersteinii shared 11 of 14 major constituents (79%), correlating with their similar phenotypic outcomes, while M. longifolia exhibited a more distinct chemical profile, possessing seven unique compounds. Conclusions: These findings highlight the complex biological effects of traditional herbal extracts, demonstrating that both beneficial and harmful outcomes can arise from specific phytochemicals within a mixture. By deconstructing these extracts into their active components, such as thymol, carvyl acetate, and luteolin-7-O-rutinoside, we gain critical insight into the mechanisms driving reproductive toxicity and antioxidant activity. This approach underscores the importance of component-level analysis for accurately assessing the therapeutic value and safety profile of medicinal plants, particularly those used in foods and dietary supplements.
Herbal Extract-Induced DNA Damage, Apoptosis, and Antioxidant Effects of C. elegans: A Comparative Study of Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii.
草药提取物对秀丽隐杆线虫DNA损伤、细胞凋亡和抗氧化作用的比较研究:薄荷、东方玄参和蓝蓟的比较研究
阅读:11
作者:Hu Anna, Meng Qinghao, Borris Robert P, Kim Hyun-Min
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 18(7):1030 |
| doi: | 10.3390/ph18071030 | 研究方向: | 细胞生物学 |
| 信号通路: | Apoptosis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
