Oncogenic RAS induces a distinctive form of non-canonical autophagy mediated by the P38-ULK1-PI4KB axis.

致癌 RAS 诱导一种独特的非经典自噬形式,该自噬由 P38-ULK1-PI4KB 轴介导

阅读:11
作者:Wang Xiaojuan, Li Shulin, Lin Shiyin, Han Yaping, Zhan Tong, Huang Zhiying, Wang Juanjuan, Li Ying, Deng Haiteng, Zhang Min, Feng Du, Ge Liang
Cancer cells with RAS mutations exhibit enhanced autophagy, essential for their proliferation and survival, making it a potential target for therapeutic intervention. However, the regulatory differences between RAS-induced autophagy and physiological autophagy remain poorly understood, complicating the development of cancer-specific anti-autophagy treatments. In this study, we identified a form of non-canonical autophagy induced by oncogenic KRAS expression, termed RAS-induced non-canonical autophagy via ATG8ylation (RINCAA). RINCAA involves distinct autophagic factors compared to those in starvation-induced autophagy and incorporates non-autophagic components, resulting in the formation of non-canonical autophagosomes with multivesicular/multilaminar structures labeled by ATG8 family proteins (e.g., LC3 and GABARAP). We have designated these structures as RAS-induced multivesicular/multilaminar bodies of ATG8ylation (RIMMBA). A notable feature of RINCAA is the substitution of the class III PI3K in canonical autophagy with PI4KB in RINCAA. We identified a regulatory P38-ULK1-PI4KB-WIPI2 signaling cascade governing this process, where ULK1 triggers PI4KB phosphorylation at S256 and T263, initiating PI4P production, ATG8ylation, and non-canonical autophagy. Importantly, elevated PI4KB phosphorylation at S256 and T263 was observed in RAS-mutated cancer cells and colorectal cancer specimens. Inhibition of PI4KB S256 and T263 phosphorylation led to a reduction in RINCAA activity and tumor growth in both xenograft and KPC models of pancreatic cancer, suggesting that targeting ULK1-mediated PI4KB phosphorylation could represent a promising therapeutic strategy for RAS-mutated cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。