Autophagy Related 5 Promotes Mitochondrial Fission and Inflammation via HSP90-HIF-1α-Mediated Glycolysis in Kidney Fibrosis.

自噬相关蛋白 5 通过 HSP90-HIF-1α 介导的糖酵解促进肾纤维化中的线粒体分裂和炎症

阅读:9
作者:Hu Yan, Li Jinqing, Chen Hui, Shi Yingfeng, Ma Xiaoyan, Wang Yi, Li Xialin, Zhong Qin, Wang Yishu, Jiang Daofang, Zhuang Shougang, Liu Na
Although significant progress in identifying molecular mediators of fibrosis is made, there is still controversy regarding the role and mechanism of autophagy in kidney fibrosis. Here, this study finds that autophagy related 5 (ATG5) is obviously increased in uric acid (UA), aristolochic acid (AA) and transforming growth factor-β1 (TGF-β1)-induced HK-2 cells, as well as in kidneys from patients with chronic kidney disease (CKD) and mice with hyperuricemic nephropathy (HN), aristolochic acid nephropathy (AAN) and unilateral renal ischemia-reperfusion injury (uIRI). Conditional deletion of ATG5 in HN, AAN and uIRI murine models significantly alleviated aberrant glycolysis, attenuated pathological lesions, and improved kidney function. Mechanistically, ATG5 mediates the binding between heat shock protein 90 (HSP90) and hypoxia-inducible factor 1alpha (HIF-1α), thereby enhancing the stability of HIF-1α and further promoting the overactivation of glycolysis. Subsequently, the aberrant glycolysis facilitated the occurrence of mitochondrial fission and inflammatory response, thus leading to kidney fibrosis. Taken together, the study provides solid evidence supporting that persistent activation of ATG5 in kidney tubules promotes kidney fibrosis. The profibrotic function of ATG5 is related to the regulation on HSP90-HIF-1α-mediated glycolysis, resulting in mitochondrial fission and renal inflammation. Thus, ATG5 may be a novel therapeutic target for kidney fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。