Pulsed laser (ms, 1064 nm) gold nanoparticle (GNP) heating has been used recently to achieve fast (>10â000â000 °C min(-1)) warming of vitrified droplets using gold nanorods (GNRs) as photon-absorbers. To maximize the viability of biomaterials in vitrified droplets, the droplets must be warmed as uniformly as possible. A potential approach to such warming is to use an appropriate combination of photon-absorption and -scattering to distribute heat more uniformly throughout a droplet. To investigate this, 2 plasmonic gold nanorods (GNRs), 1 hollow gold nanoshell, and 2 silica-core gold nanoshells (GNSs) were synthesized and characterized under 1064 nm laser irradiation in water, propylene glycol, and protein-rich (egg white) solutions. Using a modified cuvette laser calorimetry experiment with complementary Monte Carlo modeling, the GNSs were found to have higher per-particle absorption and scattering cross sections, while the GNRs had higher photothermal conversion efficiency, absorption efficiency, and Au mass normalized absorption cross sections. In the characterization, the GNSs with larger scattering-to-absorption ratios could have â¼30% over-estimation of photothermal conversion efficiency if scattering and reabsorption inside the solution were not considered, while GNRs with lower ratios were less impacted. Combined Monte Carlo and COMSOL simulations were used to predict the specific absorption rate (W m(-3)) and heating behavior of GNP-loaded hemispherical droplets, thereby demonstrating that the GNS case with higher scattering-to-absorption ratio achieved more uniform heating than the GNR case. Interestingly, further tuning of the scattering and absorption coefficients of the hemispherical GNP-loaded droplet within the model suggests the ability to obtain an optimal scattering-to-absorption ratio for uniform heating. These results show the importance of considering the reabsorption of scattered light to accurately characterize the photothermal conversion efficiency of GNP solutions during laser irradiation. We also show that the relative scattering and absorption properties of the nanoparticles can be designed to promote both rapid and uniform laser rewarming of vitrified droplets for application in cryopreservation.
Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials.
金纳米粒子的光热转换用于均匀脉冲激光加热玻璃化生物材料
阅读:7
作者:Liu Yilin, Kangas Joseph, Wang Yiru, Khosla Kanav, Pasek-Allen Jacqueline, Saunders Aaron, Oldenburg Steven, Bischof John
| 期刊: | Nanoscale | 影响因子: | 5.100 |
| 时间: | 2020 | 起止号: | 2020 Jun 21; 12(23):12346-12356 |
| doi: | 10.1039/d0nr01614d | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
