BACKGROUND: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified a plethora of risk loci. However, the disease variants/genes and the underlying mechanisms have not been extensively studied. METHODS: Bulk ATAC-seq was performed in induced pluripotent stem cells (iPSCs) differentiated various brain cell types to identify allele-specific open chromatin (ASoC) SNPs. CRISPR-Cas9 editing generated isogenic pairs, which were then differentiated into glutamatergic neurons (iGlut). Transcriptomic analysis and functional studies of iGlut co-cultured with mouse astrocytes assessed neuronal excitability and lipid droplet formation. RESULTS: We identified a putative causal SNP of CLU that impacted neuronal chromatin accessibility to transcription-factor(s), with the AD protective allele upregulating neuronal CLU and promoting neuron excitability. And, neuronal CLU facilitated neuron-to-glia lipid transfer and astrocytic lipid droplet formation coupled with reactive oxygen species (ROS) accumulation. These changes caused astrocytes to uptake less glutamate thereby altering neuron excitability. CONCLUSIONS: For a strong AD-associated locus near Clusterin (CLU), we connected an AD protective allele to a role of neuronal CLU in promoting neuron excitability through lipid-mediated neuron-glia communication. Our study provides insights into how CLU confers resilience to AD through neuron-glia interactions.
Alzheimer's disease protective allele of Clusterin modulates neuronal excitability through lipid-droplet-mediated neuron-glia communication.
阿尔茨海默病保护性簇蛋白等位基因通过脂滴介导的神经元-胶质细胞通讯调节神经元兴奋性
阅读:12
作者:Zhao Xiaojie, Li Yan, Zhang Siwei, Sudwarts Ari, Zhang Hanwen, Kozlova Alena, Moulton Matthew J, Goodman Lindsey D, Pang Zhiping P, Sanders Alan R, Bellen Hugo J, Thinakaran Gopal, Duan Jubao
| 期刊: | Molecular Neurodegeneration | 影响因子: | 17.500 |
| 时间: | 2025 | 起止号: | 2025 May 3; 20(1):51 |
| doi: | 10.1186/s13024-025-00840-1 | 研究方向: | 神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
