Analysis of knockout mice suggests a role for VGF in the control of fat storage and energy expenditure.

对基因敲除小鼠的分析表明,VGF 在控制脂肪储存和能量消耗方面发挥作用

阅读:5
作者:Watson Elizabeth, Fargali Samira, Okamoto Haruka, Sadahiro Masato, Gordon Ronald E, Chakraborty Tandra, Sleeman Mark W, Salton Stephen R
BACKGROUND: Previous studies of mixed background mice have demonstrated that targeted deletion of Vgf produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically-induced obesity. To investigate potential mechanism(s) and site(s) of action of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, we further analyzed the metabolic phenotypes of two independent VGF knockout lines on C57Bl6 backgrounds. RESULTS: Unlike hyperactive VGF knockout mice on a mixed C57Bl6-129/SvJ background, homozygous mutant mice on a C57Bl6 background were hypermetabolic with similar locomotor activity levels to Vgf+/Vgf+ mice, during day and night cycles, indicating that mechanism(s) other than hyperactivity were responsible for their increased energy expenditure. In Vgf-/Vgf- knockout mice, morphological analysis of brown and white adipose tissues (BAT and WAT) indicated decreased fat storage in both tissues, and decreased adipocyte perimeter and area in WAT. Changes in gene expression measured by real-time RT-PCR were consistent with increased fatty acid oxidation and uptake in BAT, and increased lipolysis, decreased lipogenesis, and brown adipocyte differentiation in WAT, suggesting that increased sympathetic nervous system activity in Vgf-/Vgf- mice may be associated with or responsible for alterations in energy expenditure and fat storage. In addition, uncoupling protein 1 (UCP1) and UCP2 protein levels, mitochondrial number, and mitochondrial cristae density were upregulated in Vgf-/Vgf- BAT. Using immunohistochemical and histochemical techniques, we detected VGF in nerve fibers innervating BAT and Vgf promoter-driven reporter expression in cervical and thoracic spinal ganglia that project to and innervate the chest wall and tissues including BAT. Moreover, VGF peptide levels were quantified by radioimmunoassay in BAT, and were found to be down-regulated by a high fat diet. Lastly, despite being hypermetabolic, VGF knockout mice were cold intolerant. CONCLUSION: We propose that VGF and/or VGF-derived peptides modulate sympathetic outflow pathways to regulate fat storage and energy expenditure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。