Bioconversion of Date Waste into Bacterial Nanocellulose by a New Isolate Komagataeibacter sp. IS22 and Its Use as Carrier Support for Probiotics Delivery.

利用新分离菌株 Komagataeibacter sp. IS22 将枣泥废料生物转化为细菌纳米纤维素,并将其用作益生菌递送的载体

阅读:5
作者:Sayah Islam, Chakroun Ibtissem, Gervasi Claudio, Barreca Davide, Lanteri Giovanni, Iannazzo Daniela, Celesti Consuelo, Santini Antonello, Achour Sami, Gervasi Teresa
Bacterial nanocellulose (BNC) has gained considerable interest over the last decade due to its unique properties and versatile applications. However, the low yield and the high production cost significantly limit its industrial scalability. The proposed study explores the isolation of new BNC producers from date palm sap and the use of date waste extract as a sustainable carbon source to improve BNC productivity. Results revealed three potential BNC producers identified as Komagataeibacter sp. IS20, Komagataeibacter sp. IS21, and Komagataeibacter sp. IS22 with production yield of 1.7 g/L, 0.8 g/L and 1.8 g/L, respectively, in Hestrin-Schramm (HS) medium. The biopolymer characterization indicated the presence of type I cellulose, a high thermal stability, and a highly dense network made of cellulose nanofibrils for all BNC samples. The isolate IS22, showing the highest productivity, was selected for an optimization procedure using a full factorial design with date waste extract as a carbon source. The BNC yield increased to 6.59 g/L using 4% date waste extract and 2% ethanol after 10 days of incubation compared to the standard media (1.8 g/L). Two probiotic strains, including Bacillus subtilis (BS), and Lactobacillus plantarum (LP) were successfully encapsulated into BNC matrix through a co-culture approach. The BNC-LP and BNC-BS composites showed antibacterial activity against Pseudomonas aeruginosa. BNC-probiotic composites have emerged as a promising strategy for the effective delivery of viable probiotics in a wide range of applications. Overall, this study supports the use of date waste extract as a sustainable carbon source to enhance BNC productivity and reduce the environmental footprint using a high-yielding producer (IS22). Furthermore, the produced BNC demonstrated promising potential as an efficient carrier matrix for probiotic delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。