Transcription Factor EB (TFEB) controls lysosomal biogenesis and autophagy in response to nutritional status and other stress factors. Although its regulation by nuclear translocation is known to involve a complex network of well-studied regulatory processes, the precise contribution of each of these mechanisms is unclear. Using microfluidics technology and real-time imaging coupled with mathematical modelling, we explored the dynamic regulation of TFEB under different conditions. We found that TFEB nuclear translocation upon nutrient deprivation happens in two phases: a fast one characterised by a transient boost in TFEB dephosphorylation dependent on transient calcium release mediated by mucolipin 1 (MCOLN1) followed by activation of the Calcineurin phosphatase, and a slower one driven by inhibition of mTORC1-dependent phosphorylation of TFEB. Upon refeeding, TFEB cytoplasmic relocalisation kinetics are determined by Exportin 1 (XPO1). Collectively, our results show how different mechanisms interact to regulate TFEB activation and the power of microfluidics and quantitative modelling to elucidate complex biological mechanisms.
Investigation of dynamic regulation of TFEB nuclear shuttling by microfluidics and quantitative modelling.
利用微流控技术和定量建模研究TFEB核穿梭的动态调控
阅读:8
作者:Ruolo Iacopo, Napolitano Sara, Postiglione Lorena, Napolitano Gennaro, Ballabio Andrea, di Bernardo Diego
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 15; 8(1):443 |
| doi: | 10.1038/s42003-025-07870-x | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
