Background: Pulmonary fibrosis (PF) is a progressive interstitial lung disease characterized by chronic inflammation and excessive extracellular matrix deposition, with fibrocytes playing a pivotal role in fibrotic remodeling. This study aimed to identify upstream molecular mechanisms regulating fibrocyte recruitment and activation, focusing on the SPHK1 pathway as a potential therapeutic target. Methods: We utilized Mendelian Randomization and phenome-wide association analyses on genes involved in sphingolipid metabolism to identify potential regulators of idiopathic pulmonary fibrosis (IPF). A bleomycin-induced mouse model was employed to examine the role of the SPHK1-S1P axis in fibrocyte recruitment, using SKI-349 to target SPHK1 and FTY720 to antagonize S1PR1. Results: Our analyses revealed SPHK1 as a significant genetic driver of IPF. Targeting SPHK1 and S1PR1 led to a marked reduction in fibrocyte accumulation, collagen deposition, and histopathological fibrosis. Additionally, PAXX and RBKS were identified as downstream effectors of SPHK1. Our protein-protein interaction mapping indicated potential therapeutic synergies with existing anti-fibrotic drug targets. Conclusions: Our findings establish the SPHK1-S1P-S1PR1 axis as a key regulator of fibrocyte-mediated pulmonary fibrosis and support SPHK1 as a promising therapeutic target.
SPHK1-S1p Signaling Drives Fibrocyte-Mediated Pulmonary Fibrosis: Mechanistic Insights and Therapeutic Potential.
SPHK1-S1p 信号传导驱动纤维细胞介导的肺纤维化:机制见解和治疗潜力
阅读:5
作者:Lu Fei, Wang Gaoming, Yang Xiangzhe, Luo Jing, Ma Haitao, Pan Liangbin, Yao Yu, Xie Kai
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 9; 18(6):859 |
| doi: | 10.3390/ph18060859 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
