Mef2c Controls Postnatal Callosal Axon Targeting by Regulating Sensitivity to Ephrin Repulsion.

Mef2c 通过调节对 Ephrin 排斥的敏感性来控制出生后胼胝体轴突靶向

阅读:8
作者:Sudarsanam Sriram, Guzman-Clavel Luis E, Dar Nyle, Ziak Jakub, Shahid Naseer, Jin Xinyu O, Kolodkin Alex L
Intracortical circuits, including long-range callosal projections, are crucial for information processing. The development of neuronal connectivity in the cerebral cortex is contingent on ordered emergence of neuronal classes followed by the formation of class-specific axon projections. However, the genetic determinants of intracortical axon targeting are still unclear. We find that the transcription factor myocyte enhancer factor 2-c (Mef2c) directs the development of somatosensory cortical (S1) Layer 4 and 5 identity in murine postmitotic pyramidal neurons during embryogenesis. During postnatal development, Mef2c expression shifts to Layer 2/3 callosal projection neurons (L2/3 CPNs). At this later developmental stage, we identify a novel function for Mef2c in contralateral homotopic domain targeting by S1-L2/3 CPN axons. We employ functional manipulation of EphrinA-EphA signaling in Mef2c mutant CPNs and demonstrate that Mef2c represses EphA6 to desensitize S1-L2/3 CPN axons to EphrinA5 repulsion at their contralateral targets. Our work uncovers dual roles for Mef2c in cortical development: regulation of laminar subtype specification during embryogenesis and axon targeting in postnatal callosal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。